Cooking State Recognition from Images via
Fine-Tuned VGGI19 Model

Md Taufeeq Uddin
University of South Florida
mdtaufeeglmail.usf.edu

Abstract—In order to perform automated tasks such as cook-
ing, an agent (robot) must have a good understanding of cooking
objects, and interaction between numerous cooking objects to
carry out a set of actions such as grasping, manipulation. In this
work, we focus on training computer (robot) how to recognize
different cooking objects with a specific cooking state from
cooking instructional videos using convolutional neural networks
(fine-tuned VGG19 based model). Our experimental results show
that our model recognizes cooking states with an accuracy of
71.4% and 68.4% on validation and test dataset, respectively.

Index Terms—Cooking State Recognition, Transfer Learning
- VGG19.

I. INTRODUCTION

The application of robotic systems (e.g., cooking, cleaning)
has a crucial impact on our society - assisting disable or senior
citizens to perform daily activities such as cooking, cleaning.
In order to perform this sort of tasks, a robotic system needs
to perform a set of complicated tasks such as grasping, motion
planning, control, and perception. In the case of cooking,
given a cooking instruction at high level via text or audio,
a robot should be able to prepare a meal all by itself. To
do so, a robot must be able to recognize different cooking
objects, different states of an object, the interplay between
different objects, the interplay between different states the
objects’ are in. Fortunately, we can teach a robot to do all
of these distinct tasks and cooking dynamics using machine
learning and multimodal data e.g., videos, motion data.

In this work, we aim to teach a robot different states of a
given cooking object from raw images using state-of-the-art
transfer learning approach [2]. First, we extracted raw images
from Youtube videos and then annotated the cooking object
with the state using a bounding box to create labeled data.
Second, we fine-tuned the VGG19 model [3] using labeled
(cooking state recognition) dataset. In our final model, we
included a few new layers on top of fine-tuned VGG19 model
including one global max-pooling layer, two fully-connected
layers, two drop-out layers and finally one softmax layer.
We explored learning rate, optimization algorithms such as
RMSProp, Adam to figure out the best possible cooking
state recognition model. Our (final) submitted model obtained
recognition accuracy of 71.4% and 68.4% on validation and
test dataset, respectively.

II. RELATED WORK

Over the last decade, object recognition [4] from stationary
and dynamic data in generic and wild settings becomes one

of the crucial topics of study to the researchers given the rise
of deep learning, the ubiquity of data, and computing power.
There are some application-specific studies available as well.
For example, Sun et al. [5] provided a broader overview of the
robotic system for cooking. The author demonstrated how a
robotic chef will take a text level command about a recipe, and
then perform a set of tasks such as perception, manipulation
and grasping in a dynamic environment to prepare a recipe.
The author also developed a computation pipeline named
FOON (functional object-oriented network) [6] in which they
used convolutional neural network to recognize states of
objects from images and deep recurrent network for motion
generation.

There are few studies available in the literature which
mainly focused on the object (and its state) recognition in the
context of cooking. For instance, Jelodar et al. [1] introduced
the cooking state recognition task from a robotics point of
view. They modeled the state recognition task as multiclass
(11 classes) classification task. The extracted raw images
from Youtube cooking instruction videos and annotated the
images using bounding boxes to label objects and states a
given object is in. Finally, for recognition task, they used a
ResNet based fine-tuned classification model which obtained
decent accuracy in benchmark dataset. There are some other
studies [7]-[9] available in the literature that also use transfer
learning approach [2] for cooking state recognition, in which
researchers modeled the cooking state classification as a
seven class classification problem to recognize the state of a
given cooking object using fine-tuned VGG16, Inception V3
architectures [10] with some additional layers.

III. DATASET

Cooking state recognition dataset is available at http:
//rpal.cse.usf.edu/datasets_cooking_state_
recognition.html. This dataset consists of images of
cooking objects such as onion, tomato etc, with different states
such as sliced, diced, etc. There are 11 different cooking
states in total including creamy-paste, diced, floured, grated,
juiced, julienne, mixed, other, peeled, sliced, and whole states.
Annotated images were extracted from cooking instruction
videos (in which a subject performs a cooking task deploying
a camera on his/her forehead). The training and validation
dataset has 6348 and 1377 images, respectively. A sample of
the dataset representing 11 cooking states is shown in Figure
2.

input: | (Nene, 224,224,3)
input_1: InputLayer
output: | (None, 224,224, 3)

(Nonc, 224, 224, 3)
(None, 224,224, 64)

input:

block1_cony1: Conv2D
output:

input: | (Nonc, 224,224, 64)
block1_conv2: Conv2D
output: | (None, 224,224, 64)

[input: | (None. 224.224.64) |

blockl_pool:
ocklpoo [output: | (None, 112,112, 69) |

(None, 112, 112, 64)
(None, 112,112, 128)

input:
output:

block2 convl: Conv2D

(None, 112, 112, 128)
(Nonc, 112,112, 128)

input:
output:

block2 conv2: Conv2D

input: | (None, 112,112, 128)
output: (Nonc, 56, 56, 128)

block2_pool: MaxPooling2D

block3. 1. Conva | mput:_| Nane, 56, 56, 128)
oeioromv T TonvEP Toutput: | (None. 56, 56. 256)

input:_| (None, 56, 56, 256)
block3_conv2: Conval
output: | (None. 56,56, 256)

input:_| (None, 56, 56, 256)
hlock3_conv3: Conval
output: | (None, 56, 56, 256)

inpur:_| (None, 56, 56, 256)
hlock3_conva: Conval>
output: | (None, 56, 56, 256)

input:_| (None, 56,56, 256)
output: | (None, 28, 28, 256)

block3_pool: MaxPooling2D

input:_| (None, 28, 28, 256)
block4_conv1: Conv2D
output: | (None, 28, 28, 512)

input: | (None, 28,28, 512)
block4_conv2: Conv2D
output: | (None, 28, 28, 512)

input: | (None, 28, 28, 512)
block4_conv3: Conv2D
output: | (None, 28, 28, 512)

input: | (None, 28, 28, 512)
block4_conv4: Conv2D
output: | (None, 28, 28, 512)

input: | (None, 28,28, 512)

(None, 14, 14, 512)

block4_pool: MaxPooling2D
output:

) input: | (None, 14, 14, 512)
blockS_conv1: Conv2D:
output: | (None, 14, 14, 512)

) input: | (None, 14,14, 512)
blockS_conv2: Conv2D:
output: | (None, 14, 14, 512)

input: | (Nonc, 14,14, 512)
blockS_conv3: Conv2D
output: | (None, 14, 14, 512)

input: | (Nonc, 14, 14, 512)
blockS_conv4: Conv2D
output: | (None, 14, 14, 512)

input: | (Nonc. 14,14, 512)

blockS_pool: MaxPooling2D
output: | (None,7,7,512)

[input: | (None.7.7.512) |

global_average_pooli 1: Global ing2D

[output: | (None, 512)

(None, 512)
(None, 256)

input:
output:

dense 1: Dense

input:

output: | (Nonc, 256)

256
| dropout_1: Dropout (None, 236) |

input:_| (None, 256)

dense_2: Dy
cHse-£:Dese 0 tput: | (Nonc. 128)

l—]

input:_| (None, 128)

d 2: Dropout
ropout_2: Dropout (= T None, 128)

l—]

input:_| (Nome, 128)
output: | (None, 11)

dense_3: Dense

Fig. 1: Cooking state recognition model.

IV. METHOD
A. Data processing

In this work, we augmented the training dataset by perform-
ing horizontal flip operation. All images in training, validation
and test dataset are resized to 224X224 (i.e., the number of
pixels in horizontal and vertical directions are 224 and 224,
respectively).

B. VGGI9 based Cooking State Recognition Model

VGGI19 is a deep convolutional neural network which
was trained on ImageNet dataset [11]. VGGI19 contains five
different blocks; each block contains multiple convolution
layers and one maxpooling layer. It also contains three fully
connected layers on top of the convolutional layers. In this
work, we fine-tuned our cooking state recognition model by
freezing all layers of VGG19 model. We then included one
global maxpooling layer, two fully connected layers, two drop-
out layers, and one softmax classification layers on top of
VGG19 model. A pictorial representation of the cooking state
recognition model is shown in Figure 1. The total number of
trainable parameters is 165,643 and non-trainable parameters
is 20,024,384.

C. Parameters Tuning

To find out optimal model, we experimented with batch size
of 32, 64, and 128. We finally chose the batch size of 128 for
our final submission. The learning rate has experimented with
value: 0.01, 0.001, and 0.0001; finally, we used a learning
rate of 0.001 since it provides a good balance in terms of
training time and accuracy. We experimented with different
number of hidden units for our fully connected layers, e.g.,
256, 128, 32, 16. We also experimented with two optimization
algorithms such as RMSProp [12], and Adam [13]. Since the
size of the cooking state recognition dataset is comparatively
small to train a deep model, overfitting was a concern; as
a consequence, we experimented with drop-out [14] as a
regularizer. The impact of hidden units, optimizer, and drop-
out in the model building process is demonstrated in Section
V.

V. EXPERIMENTAL RESULTS

In our experiment, we used a separate training dataset
to train the recognition model and validate the learning on
a separated validation dataset. Finally, we tested our final
trained model on the unknown test dataset. To evaluate the
generalization of the trained model, we plotted loss per epochs
using training and validation dataset. To evaluate the recog-
nition performance, we use several evaluation metrics such
as accuracy, confusion matrix, precision, recall, and fl-score
[15].

A subset of the designed and experimented models are
included in Table II. The training and validation loss per
epochs for each of the model is shown in Figure 3. From
Table IT and Figure 3, we can observe that when the number of
hidden units is higher, the difference between training loss and
validation loss is higher; due to overfitting. As a consequence,

(c) Floured

Y

(a) Creamy paste (b) Diced

(g) Mixed

(h) Other

(i) Peeled

(f) Julienne

(d) Grated

N

(j) Sliced (k) Whole

Fig. 2: Sample images from the cooking state recognition dataset [1].

TABLE I: Performance evaluation on validation dataset using model 3. Here, in our confusion matrix, N represents the total
number of images in the validation dataset; horizontal direction indicates classified cooking states, and vertical direction
indicates original cooking states; Pr., Re. and F1 indicate precision, recall, and fl-score, respectively.

N = 1377 | Cr. Paste | Diced | Floured | Grated | Juiced | Jullienne | Mixed | Other | Peeled | Sliced | Whole Pr. Re. F1
Cr. Paste 78 2 3 4 4 1 1 7 1 3 1 0.66 | 0.74 | 0.70
Diced 3 84 2 4 1 2 4 8 0 3 1 0.78 | 0.75 | 0.76
Floured 2 73 1 1 4 0 8 0 14 6 0.80 | 0.66 | 0.73
Grated 16 4 2 72 4 11 0 3 0 3 1 0.77 | 0.62 | 0.69
Juiced 5 0 2 1 89 0 0 1 2 0 0.84 | 0.88 | 0.86
Jullienne 1 0 1 3 0 86 3 5 2 6 1 0.75 | 0.80 | 0.77
Mixed 0 0 0 0 0 5 88 6 0 0 0.80 | 0.89 | 0.84
Other 6 7 2 [§ 3 2 13 73 5 19 7 047 | 0.51 | 049
Peeled 3 3 0 0 0 2 0 3 73 6 11 0.74 | 0.72 | 0.73
Sliced 5 7 1 2 0 2 0 26 2 161 9 0.69 | 0.75 | 0.72
Whole 1 1 3 0 4 0 15 13 16 113 0.75 | 0.68 | 0.71

TABLE II: Influence of hyper-parameters. Here, each row of
the table represents one specific model.

Model | Hidden Units | Optimizers | Drop-Out
1 (32, 16) RMSProp 0.2, 0.2)
2 (32, 16) Adam 0.2, 0.2)
3 (256, 128) RMSProp 0.2, 0.2)
4 (256, 128) RMSProp 0.5, 0.5)
5 (256, 128) Adam 0.5, 0.5)

we changed the drop-out rate to a higher value (0.2 to 0.5), and
we observed a decent improvement in terms of generalization.
We can infer that drop-out could decrease the bad influence
of overfitting. According to Figure 3 and 4, we report that the
fluctuation in validation loss and accuracy from one epoch to
another is significantly higher than training loss and accuracy.
One of the reasons behind that might be the size of the
validation dataset (1377 images).

From Figure 4, we can see that deep model leads to better
recognition performance. However, the deeper model also

incorporates overfitting as we can see in Figure 4(c). Note that
using the model 1, model 2, model 3, model 4 and model 5, we
obtained cooking state recognition accuracy of 64.7%, 67.8%,
71.9%, 67.4%, 71.3%, respectively on validation dataset.
Recall that model 3 was our final submission; we achieved
68.4% accuracy on the test dataset using model 3. From Table
I, we observe that the recognition model fails to recognize
“other” state with decent Fl-score (0.49) compared to rest of
the cooking states. The reason behind that could be internal
variability in “other” state since in our experimental design, we
put all possible states in ~other” state category, aside from the
states (e.g., diced, juiced, sliced, etc) available in the dataset.
We can also observe that model 3 misclassified most of the
cooking states (especially sliced, whole) as “other” state in
a significant number of times. Model 3 also misclassified
grated state as creamy paste and julienne states, floured state
as sliced state. Finally, based on the lower right segment
of confusion matrix in Table I, we can infer that inter-state
similarity between other, peeled, sliced, and whole is higher
which leads to higher misclassification rate in that specific

05

Accuracy

Accuracy

04

— Training

~—— Validation
o 25 50 75 100 125 150 175 200
Epoch
(a) Model 1
—— Training
—— Validation
o 25 50 75 100 125 150 175 200

Epoch

(d) Model 4

3.5 4 — Training
~—— Validation
30
25
0
3
320
15
10
0 25 50 75 100 125 150 175 200
Epoch
(b) Model 2
—— Training
64 —— Validation
5
4
g
3
2
1
0 25 50 75 100 125 150 175 200

Epoch

(e) Model 5

— Training
~—— Validation

0 100 200 300 400 500
Epoch

(c) Model 3

Fig. 3: The depiction of generalization of cooking state recognition model on training and validation dataset.

— Training
—— Validation

0 25 50 75 100 125 150 175 200
Epoch

(a) Model 1

— Training
—— Validation

0 25 50 75 00 125 150 175 200
Epoch

(d) Model 4

— Training
—— Validation

0 25 50 75 100 125 150 175 200
Epoch

(b) Model 2

— Training
~—— Validation

0 25 50 75 100 125 150 175 200
Epoch

(e) Model 5

Accuracy

— Training
—— validation

0 100 200 300 400 500
Epoch

(c) Model 3

Fig. 4: The depiction of recognition accuracy of cooking state recognition model on training and validation dataset.

segment of the confusion matrix.

VI. CONCLUSION

In this paper, we recognized cooking states from raw
images using VGG19 based fine-tuned model. Based on our
experiments, we reported that deeper models (model 3, model
5) tend to recognize the cooking states more accurately than
a less deep model (model 1, model 2). However, the deep
model tends to overfit; hence, the usage of regularizer could
be beneficial. The intra-state variability and inter-states sim-
ilarity could lead to poor recognition performance. Finally,
the dataset is comparatively small towards building robust
cooking state recognition model. As a consequence, in our
future work, we will focus on collecting more data to reduce
overfit, to reduce intra-state variability and to reduce inter-state
similarity.

REFERENCES

[11 A. B. Jelodar, M. S. Salekin, and Y. Sun, “Identifying object states in
cooking-related images,” arXiv preprint arXiv:1805.06956, 2018.

[2] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-
1359, 2010.

[3] K. Simonyan and A. Zisserman, ‘“Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[4] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with
deep learning: A review,” CoRR, vol. abs/1807.05511, 2018. [Online].
Available: http://arxiv.org/abs/1807.05511

[5]
[6]

[7]
[8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

Y. Sun, “Ai meets physical world—exploring robot cooking,” arXiv
preprint arXiv:1804.07974, 2018.

D. Paulius, Y. Huang, R. Milton, W. D. Buchanan, J. Sam, and Y. Sun,
“Functional object-oriented network for manipulation learning,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1IEEE, 2016, pp. 2655-2662.

R. Paul, “Classifying cooking object’s state using a tuned vgg convolu-
tional neural network,” arXiv preprint arXiv:1805.09391, 2018.

A. Sharma, “State classification with CNN,” CoRR, vol. abs/1806.03973,
2018. [Online]. Available: http://arxiv.org/abs/1806.03973

M. S. Salekin and A. B. Jelodar, “Cooking state recognition from
images using inception architecture,” CoRR, vol. abs/1805.09967, 2018.
[Online]. Available: http://arxiv.org/abs/1805.09967

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818-2826.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” 2009.

O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Col-
menarejo, M. Denil, N. de Freitas, and J. Sohl-Dickstein, “Learned
optimizers that scale and generalize,” in Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 3751-3760.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929-1958, 2014.

M. Hossin and M. Sulaiman, “A review on evaluation metrics for
data classification evaluations,” International Journal of Data Mining
& Knowledge Management Process, vol. 5, no. 2, p. 1, 2015.

