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Abstract—This paper proposes 12 multi-object grasps (MOGs)
types from a human and robot grasping data set. The grasp types
are then analyzed and organized into a MOG taxonomy. This
paper first presents three MOG data collection setups: a human
finger tracking setup for multi-object grasping demonstrations, a
real system with Barretthand, UR5e arm, and a MOG algorithm,
a simulation system with the same settings as the real system.
Then the paper describes a novel stochastic grasping routine
designed based on a biased random walk to explore the robotic
hand’s configuration space for feasible MOGs. Based on obser-
vations in both the human demonstrations and robotic MOG
solutions, this paper proposes 12 MOG types in two groups:
shape-based types and function-based types. The new MOG types
are compared using six characteristics and then compiled into a
taxonomy. This paper then introduces the observed MOG type
combinations and shows examples of 16 different combinations.

I. INTRODUCTION

Grasping multiple objects at once from a pile is common
for us. It is so common that we have the word “handful” to
describe a quantity that fills the hand. When we were children,
we grasped a handful of candies from a bowl. We pick a
handful of Brussel sprouts from a bag when we cook. When
we make a drink, we pick up two or three ice-cube at once
from an ice bucket. If we want multiple objects, we pick
them up rarely one by one, but at once, because it is more
efficient. We can observe similar scenarios in manufacturing
and logistics. In manufacturing, workers get a handful of bolts
from a bin and then put them on one by one. In logistics,
warehouses regularly apply a strategy called batch picking and
instruct pickers to collect the same items for multiple orders
simultaneously. Human workers are very good at picking
multiple same items at once.

However, robotic technology today has only been developed
to pick up one thing at a time [1]. No matter how efficient a
single-object picking is, it cannot compete with a system that
can pick up multiple objects in one grasp. For example, if a
robotic system can pick up an object and drop it into a bin in
3 seconds, to pick up five same items, the robot would need
to pick five times, which is 15 seconds. In contrast, a human
worker could pick five items at once in about 3 seconds. It is
five times faster. There is no way speeding up the robot could
catch the difference.

Therefore, a robot needs to gain multi-object grasping ca-
pability (MOG). However, picking up multiple objects has not
been studied in robotics literature since it is widely considered
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difficult [2]. To develop suitable tools and technologies for
multi-object gasping (MOG), we should analyze the unique
characteristics of multi-object grasping.

In the traditional single-object grasping (SOG), grasps are
divided into precision grasps and power grasps [3]. A power
grasp is chosen for stability and security since it provides
large contact areas between the surfaces of a hand’s finger
and palms and the grasped object. A precision grasp is chosen
for dexterity and sensitivity since only the fingertips contact
the object. When grasping multiple objects, the hand needs
to provide multiple contact areas that support and press on
the objects and enough space so that an adequate number of
objects are in the grasp. The fingers cannot squeeze on the
objects as hard as the power grasps since objects could be
squeezed out.

This paper first designs three data collection approaches
to discover distinctive grasp types for multi-object grasping.
The first one collects multi-object grasping data performed by
a human demonstrator because human grasp strategies have
inspired the development of many robotic grasping approaches
[4]-[6]. The other two collect multi-object grasping in a
simulation and a real robotic system through a stochastic
grasping approach. Then, we manually identify distinctive
grasp types based on the MOG data in all demonstrations.
In the end, we compile all grasp types into a comprehensive
MOG taxonomy.

A. Related works

The literature provides a wide range of single object grasp-
ing types and taxonomies. One of the studies classified hand
usage by monitoring every action of subjects during a typical
day and the authors came up with four features that annotate
grasps: hand shape, force type, direction, and flow [7]. Another
study that was performed by Cutkosky [8] monitored the
grasps used by machinists and developed a taxonomy based
on the observations. The developed taxonomy consists of a
hierarchical tree of grasps that begins with the two basic
categories: power grasp and precision grasp. We get a more
detailed task and object geometry down the tree. Fiex et al.
[9] developed a grasp taxonomy by comparing all other human
grasp taxonomies and finding the largest set of distinct grasps
for holding one object securely. Their taxonomy consists of
33 different grasp types that are arranged according to the
opposition type, virtual finger assignments, type in terms of
power/precision/intermediate grasp, and the thumb position.

Most of the existing grasping taxonomies divide grasp types
into power, precision, and intermediate grasps. A power grip is
a grip formed with partly flexed fingers and the palm, while in



precision grip, the object is pinched between fingers [7]. The
intermediate grasp is a mix of power and precision grasps.
The existing single-object grasping taxonomies also classify
the grasp types according to the position of the thumb. The
thumb can be abducted, adducted, extended, or flexed. The
opposition type is another criterion according to which the
grasp types can be arranged. The three basic opposition types
are pad opposition which occurs along a direction parallel
to the palm; palm opposition which occurs along a direction
perpendicular to the palm; and side opposition which occurs
along a direction transverse to the palm [9]. In some cases,
several fingers apply forces in the same direction and act in
unison. Therefore, they work together as a single virtual finger
(VF) [9]. Grasp types can be classified according to the virtual
finger assignments.

Our previous work [10], [11] has used functional principal
component analysis (fPCA) and trajectory distances to ana-
lyze grasping motions and extract dynamic features in finger
motions. After analyzing and comparing many finger motions
of the 15 grasp types in the Cutkosky grasp taxonomy, we
found several grasp types are very similar in terms of the
finger motions. Based on the finger motion alone, the 15
grasp types can be grouped to 5 distinctive groups, and the
finger motions from different grasp types within each group
are indistinguishable.

A limited amount of work on grasping multiple objects
has been carried out for static grasp stability analysis. [12],
[13] discuss the enveloping grasp of multiple objects under
rolling contacts and [14] studied force closure of multiple
objects. It builds the theoretical basis for later work on
active force closure analysis for the manipulation of multiple
objects in [14]. [15]-[17] try to achieve stably grasping of
multiple objects through force-closure-based strategies. Our
recent work [18] has studied the tactile sensing aspect of
MOG and developed a deep learning approach to estimate the
number of objects in the grasp. We have also developed an
Markov-decision-process-based MDP-MOG model to generate
an optimal policy for picking and transferring multiple same
objects [19] from one bin to another.

II. DATA COLLECTION

To fully discover the multi-object grasp types and study
all types of interactions between fingers and objects, we have
collected multi-object grasping samples from human demon-
stration trials, random trials (through stochastic grasping) in a
simulation setup with a simulated robotic hand and arm, and
refined random trials in a real grasping setup with a robotic
hand and arm. The three setups are shown in Figure 1.

a) Human demonstration setup: As shown in Figure
1(A), we have collected hand posture data through a 5-DT
Data Glove and video recording of a set of multi-object
grasping by a human participant from a container containing
about 30-50 objects. The 5-DT Data Glove has 14 sensors
that measure the flexion of Metacarpophalangeal Joints and
Proximal Interphalangeal Joints and the abductions between
the fingers. We use the data glove data to observe the occluded

fingers when there are occlusions in the recordings. More
details on the setup can be found at [20].

b) Real system setup: We utilize a URSe robot arm and
a Barrett hand with tactile sensors in the PI's lab to set up a
real environment and collect multi-object grasping data. The
Barrett hand has seven joints, and each hand pose contains the
readings from all the 7 joints. The Barrett hand’s palm has 24
tactile sensors, while each finger has 24 tactile sensors. Each
finger also has a strain gauge sensor measuring the coupled
joint torque.

c) Simulation setup: Simulation provides an economical
way of collecting a significant amount of grasping data.
Figure 1(B) shows a preliminary setup we have developed
in CoppeliaSim !. The current simulation system, as shown
in Figure 1 (C) has a URS robotic arm and a Barrett Hand
embedded with tactile sensors and joint torque sensors. We
selected CoppeliaSim because our preliminary study showed
the data collected in CoppeliaSim closely resemble the data
collected in the real system.

d) Objects: In the simulation, we have the robotic hand
to grasp objects in eleven basic shapes: sphere, hemisphere,
cuboid, cone, square pyramid, triangular pyramid, cylinder,
hexagonal prism, triangular prism, rectangular prism, and
torus, and in two sizes. We have created all the proposed
basic shapes in CoppeliaSim as shown in Figure 2(Top). In the
human grasping demonstration and the real robotic grasping,
the hands grasp eight objects with different shapes and sizes.
They are ping-pong ball, foam cube, ice cube, coin, candy bar,
strawberry, bolt, and peanut as shown in Figure 2(Bottom).

A. Human multi-object grasping data collection

For each shape, our demonstrator wore a data glove and
grasped objects from the bowl 25 times in the following order:
5 grasps of one object, 5 of two objects, 5 of three objects,
5 of four objects, and 5 of five objects. However, the data
collection routine for pencils was a little different. A total of
15 grasps were performed in the following order: 5 grasps
of a minimum number (4-5 pieces) of pencils, 5 grasps of
an average number of pencils, and 5 grasps of a maximum
number of pencils. In each grasp, the participant immersed the
hand into the container to get the required number of objects.
Then the participant lifted the hand out and held it in the air to
have the camera system fully observe the hand and the objects
inside of the hand.

B. Robot grasping data collection

We have developed a stochastic hand flexing/extending rou-
tine and a random stop mechanism to explore potential good
hand configurations for grasping multiple objects. For each
shape and size, the Barrett hand keeps performing stochastic
grasps to grasp objects from the bin until a total of 100
successful cases are collected. At the end of each stochastic
grasp, the hand lifts out, and we count how many objects are
successfully grasped. The successful cases are the ones where

IThe CoppeliaSim software is from: https://www.coppeliarobotics.com
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Fig. 1. Data collection setups for (A) human demonstration; (B)real robotic grasping; (C) simulation environment developed in CoppeliaSim.

Fig. 2. (Top) Basic shapes for data collection; (Bottom) Objects used in our preliminary studies.

the hand holds two or more objects in the air. The system
records those cases with the hand pose and side photos for
both systems, and object locations in hand for the simulation.
a) Stochastic grasping routine: The proposed stochastic
flexing routine will allow the fingers to flex/extend at various
rates so that a robotic hand can form different kinds of shapes.
It provides the necessary diversity in exploring MOG. The
stochastic flexing routine is designed based on the biased
random walk idea, which is summarized in equation 1.

d<t):p*dfw+q*dbw+(l_p_q)*dstay7 (1)

d(t) represents the distance a particular finger should move
at time ¢, p is the probability of flexing, q is the probability
of extending, dy,, is the flexing distance, dy,, is the extending
distance, ds¢q, means the finger will stay at the same location.
We choose p as 0.7, q as 0.1, dy,, as 3° and dp,, as —3°.

The stochastic flexing/extending routine based on the biased
random walk is detailed in [21]. The bias random walk
approach allows the fingers to flex most of the time, extend
sometimes, and stop a few times. This approach simulated the
human finger movement when grasping multiple objects. We
selected 3°/step in consideration of the time-cost of the data
collection. The coupled joint of each finger moves with the
base joint at a ratio of 1/3.

III. MULTI-OBJECT GRASP TYPES

A. Multi-object grasp types

Using the setups, we have collected 400 instances of hu-
man hand MOG, 26,200 instances of Barrett Hand MOG in

simulation, and 1,300 instances of Barrett Hand MOG in real.
We have reviewed all the instances and categorized all the
instances into 12 basic types of two groups: shape-based MOG
group and function-based MOG group.

a) Shape-based MOG group: Both a human hand and
a robot hand tend to form certain shapes when grasping
multiple objects. The shapes usually involve all fingers. We
have observed the following common shapes:

e Cylindrical shape. The fingers and thumb form a cylin-
drical shape.

o Funnel shape. The fingers form a funnel shape, and the
fingertips form and control the funnel’s opening.

e Cup shape. All fingers are bending upward to form a
space to hold the objects. This shape can resemble a
spoon as well.

e Tracks. Two fingers form two tracks so that the objects
stay on the tracks, while a third finger may also be applied
to block the end of the tracks to prevent the objects from
falling.

o Inverse basket shape. Fingers form a shape like a wire
basket. Since the opening of the hand is downward when
picking up objects, the shape is an inverse basket shape.
Unlike the funnel shape grasp, the inverse basket shape
grasp has a much larger volume and wider opening. The
objects are squeezed together to prevent falling while
the objects in the funnel shape grasp could rest on the
fingertips.

o Maximum space shape. All fingers and the thumb spread
as wide as possible and then flex. They form a maximum



Types (shape-based)

Cylindrical

Funnel

Tracks

Inverse basket

Human hand examples
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Barrett hand examples N/A N/A
Types (function-based) Abduction Clip Finger-palm clip Finger-finger clip | Fingertip- Fingertip-finger Multi-finger
pinch pinch

Human hand examples

Barrett hand examples
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fingertip pinch

N/A

-

TABLE T
GRASP TYPES.

space when they hold objects.

b) Function-based MOG group : In some other in-
stances, the fingers move toward each other without aiming
to form a certain shape. The finger moving direction serves
as a function of the finger, and the hand’s final shape is less
important. The function-based MOG types usually involve a
subset of fingers. The types in this group are:

o Abduction clip (scissors). Objects are grasped in between
the sides of two fingers. The two fingers act like a pair
of scissors.

« Finger-palm clip. A finger presses the objects against the
palm.

o Finger-finger clip. Two fingers (or one finger and one
thumb) press against each other to hold objects between
the fingers. It is different from the abduction clip since
the finger-finger clip grasp uses the palmar side of the
fingers to press on the objects.

« fingertip-fingertip pinch. Two fingertips use their tips
pressing on the objects to hold them.

« fingertip-finger pinch. A fingertip uses its tip to press the
objects on another finger.

o multi-finger pinch (tripod). Multiple fingertips use their
tips pressing on the objects to hold them. They form
tripod support of the objects.

IV. RELATIONSHIPS OF MULTI-OBJECT GRASP TYPES
A. Type characteristics

We have also studied the characteristics associated with each
MOG grasp type and summarized them in Table I. Many types
share the same characteristics.

a) Opposable thumb/fingers: Some MOG types in Table
I have to have a finger at the opposite side of the other fingers,
such as the Finger-finger pinch type. The finger on the opposite
side can be viewed as the opposable thumb. All fingers should
be on one side for some other grasp types, such as the Cup
type. For the rest, having an opposable thumb is irrelevant to
the type.

b) Finger abduction/adduction: Several MOG types in
Table I require the fingers to abduct to an extensive or
maximum range, such as the Max and Finger-finger pinch
types. Some MOG types prefer to have the fingers partially
abducted to form a gap between fingers, and the gap size is
related to the object size, such as the Track and Cup types.
In some MOG types, the fingers should be adducted, such
as the Cylindrical type. In others, the abduction/adduction is
irrelevant, such as the Finger-palm clip type.

c) Finger flexion: Several MOG types in Table I depend
on the fingers to flex to a certain level. Some types require
the fingers to flex moderately to form a shape, such as the
Funnel and Track types, while some others would need the
fingers to flex quite much to form a shape, such as the Cup
type. Some types would require the fingers to flex until they
reach a certain resistance level. In the function-based types,
fingers usually flex till reaching a certain resistance.

d) Contact location: Different MOG types could expect
different parts of the hand to be in contact with the objects. For
example, a Cylindrical grasp would expect both the fingers and
the palms to contact the objects, while Scissors grasp would
only expect the sides of two fingers to contact the objects.
Understanding the potential contact locations could help in



designing tactile sensor locations.

e) Manipulation difficulty: After a grasp is formed, the
objects in the grasps of some shape-based types are not
sensitive to the finger movements, such as the Cup type.
Therefore the fingers can move to manipulate the objects
slowly without worrying about dropping them. However, the
grasps of the function-based grasping types could be very
sensitive to finger movement and make manipulating objects
difficult. In-hand manipulation strategies [22]-[26] such as
rolling, sliding, finger gaiting, and regrasping can be easily
applied to grasps in the shape-based types but difficult to the
ones in the function-based grasp types.

f) Closure and force: Picking out objects from a bin
doesn’t require form closure. So, MOG grasps of any type
don’t have to have form closure. The grasps of the function-
based grasp types usually require force-closure, such as the
Finger-finger pinch type. The force closure should be calcu-
lated in considering both the finger-object and object-object
contacts. The grasps of some shape-based grasp types don’t
even require force-closure since the objects can rest on some
parts of the fingers and can rotate and move in a small range,
such as the Track and Cup types. In those grasps, the object
may fall off the hand if it moves out of local containment due
to shaking or other disturbances. So they are in containment,
but not in force or form closure or cage.

B. Taxonomy

We can organize the MOG types into several taxonomies
based on their groups and characteristics. Figure 3 presents
one taxonomy first based on their groups. In the shape-based
group, the types can be divided by the quantity of the objects
in grasps. While in the function-based group, the types are
divided into Clip and Pinch. We can further divide the types
under Clip into two groups: using the palm and not using the
palm.

Shape-based Function-based

Handful

L= ] |
basket

Finger
-palm

Pinch

Fingertip-
fingertip
pinch

Fingertip
-finger
pinch

Fig. 3. MOG Taxonomy.

C. Combination of types

Different from single-object grasping, multi-object grasping
types can be combined to form more complicated grasp types
or have multiple same grasp types in one grasp. The popular
duplicated grasp types in one grasp are: Multiple Scissors

shapes; Multiple finger - palm clips, Multiple finger - finger
clips; Multiple fingertip - fingertip pinches; Multiple lateral
pinches; Multiple Tripods.

We have observed that many function-based grasp types
are regularly combined: Cylindrical & fingertip - fingertip
pinch; Cylindrical & Scissors; Funnel & Scissors; Funnel &
fingertip-fingertip pinch; Cup & Scissors; Cup & finger-palm
clip; Tracks & Scissors; Tracks & finger - palm clip; Inverse
basket & Scissors; Max & Scissors; and any combinations of
function-based grasp types.

Table III shows several examples of the combined grasp

types.

V. CONCLUSION

We have developed three MOG setups to collect MOG
data in human demonstrations, stochastic grasping in a robotic
simulation, and stochastic grasping in a real robotic system.
We developed a novel stochastic grasping routine based on bias
random walk to fully explore the robotic hand’s configuration
space for feasible MOGs. Using the setups and data collection
routines, we have collected 400 human MOGs and 27,800
robotic MOGs. After studying the collected data manually,
we have summarized them in 12 MOG types of two groups:
shape-based types and function-based types. We then further
study the new MOG types using six characteristics based
on hand configurations, contact features, and manipulation
difficulties. We then compiled the MOG types into the first
MOG taxonomy.

We have also observed that many MOGs could belong to
multiple grasp types since some objects are held with several
fingers in one type while others are held with the same and/or
other fingers in other types. Therefore, we introduce observed
MOG type combinations and show examples of 16 different
combinations. We have also compared the MOG types with
single-object types and taxonomies.

Similar to SOG types and taxonomy, we believe that the
MOG types and taxonomy are useful in developing suitable
MOG planning algorithms, analyzing multi-object contain-
ment, and perceiving objects status in MOGs. This study is
limited to one robotic hand and one human hand because the
authors’ lab has only a Barrett Hand. Therefore, the MOG
types discovered in this study are only common types. Studies
with other robotic hands may produce different MOG types
and taxonomy. It is also likely people with extraordinary skills
can produce more diverse MOG types. Even though this study
does not explore the relationship between MOG and in-hand
manipulations [13], general manipulations [27]-[29], or novel
robotic gripper/hand designs [30], the MOG types could be
helpful in those research directions.
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Grasp Groups Characteristics
types Shape- function- || opposable| abduction/ flexion contact manipulability | closure and
based based thumb adduction location force
Cylindrical Yes No Irrelevant | Loosely Resistance- | Finger Easy containment
adducted based and
palm
Funnel Yes No Yes Partially Small Finger Easy containment
abducted
Cup Yes No No Partially Large Finger Easy containment
abducted
Tracks Yes No Yes Partially Small Finger Easy containment
abducted
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abducted and closure
palm
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abducted side closure
Finger-palm clip No Yes Irrelevant | Irrelevant Resistance- | Finger Hard Force
based and closure
palm
Finger-finger clip No Yes Yes Fully Resistance- | Finger Hard Force
abducted based closuree
Fingertip-fingertip No Yes Yes Fully Resistance- | Fingertip | Hard Force
pinch abducted based closure
Fingertip-finger pinch || No Yes Yes Fully Resistance- | Finger Hard Force
abducted based closure
Multi-finger pinch No Yes Yes Partially Resistance- | Fingertip | Hard Force
abducted based closure
TABLE I
CHARACTERISTICS OF EACH MOG TYPE.
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