First Investigation Into the Use of Deep Learning for Continuous Assessment of Neonatal Postoperative Pain

Md Sirajus Salekin, Ghada Zamzmi, Dmitry Goldgof, Rangachar Kasturi, Thao Ho, and Yu Sun

University of South Florida, United States

Automatic Face and Gesture Recognition (FG 2020)
Overview of the Work

• First investigation into the use of fully deep learning framework for assessing neonatal postoperative pain

• Present a neonatal pain dataset
 • Collected from premature and newborns while they are undergoing postoperative pain

• Propose a new deep learning framework
 • Combining spatial and temporal information
 • Estimate intensity of neonatal postoperative pain
Motivation

• Postoperative pain, or pain after surgery, occurs as a result of a tissue injury
 • Usually lasts for up to seven days

• Inadequate treatment of postoperative pain leads to
 • Chronic pain
 • Increases the financial burden
 • Serious physiological outcomes such as changes in respiratory, cardiovascular, and immune functions
 • Impaired sleep, depression, and anxiety
Research Goal

• Current standard for pain assessment
 • Pain scale such as N-PASS and PIPP
 • Manual, Inconsistent, subjective, and intermittent

• Goal?
 • Postoperative pain assessment and management providing
 • Maximum pain relief with minimum side effects
 • Proposed automated system for continuous monitoring
Data Collection

• Visual, vocal, and physiological
• Procedural pain dataset
 • 36 subjects
 • GA 30-41 weeks
• Postoperative pain dataset
 • 9 subjects
 • GA 32-39 weeks
• Pain scale
 • NIPS
 • N-PASS
Samples from Postoperative Dataset
Proposed Framework
Spatial Feature

• Bilinear CNN
 • Popular solution for fine grained image classification
 • Effectively collect local pairwise information and
 • Produce orderless texture feature
 • Merge two CNNs
 • Robustly handle intra-class variations caused by large pose, lighting, and background variations

• Pretrain – VGG-16 architecture
 • VGGFace2 dataset – 3.3M faces of 9K identities
 • ImageNet dataset – 14M images of 21K classes
Temporal Feature

- **RNN**
 - Suffers from lack of preserving long-term dependencies

- **LSTM**
 - Solves the problem of long-term dependency

Table I
Details of LSTM Architecture

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN</td>
<td>LSTM 16, Activation = Tanh, Recurrent Activation = Hard Sigmoid</td>
</tr>
<tr>
<td>RNN</td>
<td>LSTM 16, Activation = Tanh, Recurrent Activation = Hard Sigmoid</td>
</tr>
<tr>
<td>FC</td>
<td>Time Distributed Dense 16, Relu</td>
</tr>
<tr>
<td>FC</td>
<td>Time Distributed Dense 16, Relu</td>
</tr>
<tr>
<td>FC</td>
<td>Time Distributed Dense 1, Linear</td>
</tr>
</tbody>
</table>
Experimental Evaluation

• Datasets
 • Procedural (acute) pain
 • Postoperative (prolonged acute) pain
 • COPE
 • 26 subjects
 • GA 18 hours - 3 days
 • Total 204 static images

• Evaluation protocol
 • Leave-one-out-subject

<table>
<thead>
<tr>
<th>Pain intensity</th>
<th>Number of images</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1728</td>
</tr>
<tr>
<td>1</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>352</td>
</tr>
<tr>
<td>4</td>
<td>928</td>
</tr>
<tr>
<td>5</td>
<td>960</td>
</tr>
<tr>
<td>6</td>
<td>352</td>
</tr>
<tr>
<td>7</td>
<td>992</td>
</tr>
<tr>
<td>Total</td>
<td>5984</td>
</tr>
</tbody>
</table>
Experimental Results

Neonatal post-op assessment (facial pain intensity [0-1])

<table>
<thead>
<tr>
<th>Approach</th>
<th>Pretrain</th>
<th>Retrain</th>
<th>MSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG16</td>
<td>VGGFace2</td>
<td>COPE</td>
<td>0.4170</td>
<td>0.5412</td>
</tr>
<tr>
<td>VGG16</td>
<td>VGGFace2</td>
<td>Acute</td>
<td>0.1979</td>
<td>0.4035</td>
</tr>
<tr>
<td>VGG16</td>
<td>VGGFace2</td>
<td>Post-Op</td>
<td>0.3606</td>
<td>0.5155</td>
</tr>
<tr>
<td>VGG16</td>
<td>Acute</td>
<td>Post-Op</td>
<td>0.3716</td>
<td>0.5211</td>
</tr>
<tr>
<td>Bilinear VGG16</td>
<td>VGGFace2, ImageNet</td>
<td>COPE</td>
<td>0.4272</td>
<td>0.5208</td>
</tr>
<tr>
<td>Bilinear VGG16</td>
<td>VGGFace2, ImageNet</td>
<td>Acute</td>
<td>0.1917</td>
<td>0.3458</td>
</tr>
<tr>
<td>Bilinear VGG16</td>
<td>VGGFace2, ImageNet</td>
<td>Post-Op</td>
<td>0.2955</td>
<td>0.4575</td>
</tr>
<tr>
<td>Bilinear VGG16</td>
<td>Acute</td>
<td>Post-Op</td>
<td>0.2695</td>
<td>0.4173</td>
</tr>
</tbody>
</table>

Neonatal post-op assessment (pain intensity [0-7]) using LSTM

<table>
<thead>
<tr>
<th>Approach</th>
<th>MSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG16 + LSTM</td>
<td>4.8612</td>
<td>1.7274</td>
</tr>
<tr>
<td>Bilinear VGG16 + LSTM</td>
<td>3.999</td>
<td>1.5565</td>
</tr>
</tbody>
</table>
Summary

• Conclusion
 • Present a collection of neonatal postoperative pain dataset
 • Real clinical environment
 • Multimodal data (i.e. visual, vocal, and vital signs)
 • Fully automated deep learning-based framework
 • Aims to mitigate the limitations of the current assessment practice
 • Uses spatial and temporal feature

• Future work
 • Collection of larger postoperative pain dataset (on going effort)
 • Incorporating other pain modalities (i.e. body, crying sound, vital signs)
Thank you for listening!

For more information please visit our project webpage at https://rpal.cse.usf.edu/project_neonatal_pain/