
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 62, NO. 4, APRIL 2015 1141
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Abstract—Distinctive feature detection is an essential task in
computer-assisted minimally invasive surgery (MIS). For special
conditions in an MIS imaging environment, such as specular reflec-
tions and texture homogeneous areas, the feature points extracted
by general feature point detectors are less distinctive and repeat-
able in MIS images. We observe that abundant blood vessels are
available on tissue surfaces and can be extracted as a new set of
image features. In this paper, two types of blood vessel features are
proposed for endoscopic images: branching points and branch-
ing segments. Two novel methods, ridgeness-based circle test and
ridgeness-based branching segment detection are presented to
extract branching points and branching segments, respectively.
Extensive in vivo experiments were conducted to evaluate the per-
formance of the proposed methods and compare them with the
state-of-the-art methods. The numerical results verify that, in MIS
images, the blood vessel features can produce a large number of
points. More importantly, those points are more robust and repeat-
able than the other types of feature points. In addition, due to the
difference in feature types, vessel features can be combined with
other general features, which makes them new tools for MIS image
analysis. These proposed methods are efficient and the code and
datasets are made available to the public.

Index Terms—Branching point, branching segment, endoscopic
image analysis, minimally invasive surgery (MIS), vessel feature
detection.

I. INTRODUCTION

IN minimally invasive surgery (MIS), distinctive image fea-
ture extraction is one of the fundamental tasks. The extracted

image features can be used for tissue tracking [1]–[3], deforma-
tion recovery [4], [5], 3-D reconstruction [6], [7], endoscope
localization [8]–[10], augmented reality [8], [10], [11], and in-
traoperative registration [3], [12].

Different methods have been proposed to extract image
features in computer vision. Depending on what information
is used, these methods can be broadly classified into three
categories: intensity-based detectors, first-derivative-based de-
tectors, and second-derivative-based detectors. The methods
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in the first category directly rely on the comparison of pixel
intensity. For example, in the features from accelerated segment
test (FAST) [13], [14], Rosten and Drummond placed a circle
at each pixel and determined that the pixel was a corner if there
was a continuously bright or dark segment along the placed
circle.

Methods in the second category are based on the first deriva-
tives, namely Ix, Iy along x- and y- coordinates in a given raw
image I. Since the first derivative is proportional to the inten-
sity change, Ix and Iy are able to capture areas with large
intensity change, such as edges and boundaries of objects. To
find patches that are likely to be corners, Harris and Stephens
[15] exploited the eigenvalues of the autocorrelation matrix.
Mikolajczyk and Schmid [16] modified the Harris corners and
proposed the Harris-affine detector, which is invariant under
affine transformations. To overcome the difficulty of tissue de-
formation in MIS images, the anisotropic feature detector (AFD)
was introduced in [17].

In the third category, the second derivatives of the raw image
are analyzed and used for feature detection. The second deriva-
tives have strong responses on blobs and ridges [18]. Many of
these methods compute the Hessian matrix based on the second
derivatives to detect interest points. Those pixels whose deter-
minants of the Hessian matrices were local extrema in both
image space and scale space were chosen as interest points
in the Hessian-affine detector [18]. As an approximation of
Laplacian of Gaussian (the trace of the Hessian matrix), dif-
ference of Gaussian (DoG) [19] detected interest points as the
local extreme points in both image space and scale space. Bay
et al. approximated the Gaussian filters with box filters in the
calculation of the Hessian matrix, and the obtained speeded up
robust features (SURF) detector was typically faster than the
DoG detector [20].

The previously introduced methods were mainly designed for
general purposes, such as in images from man-made environ-
ments. On the contrary, MIS images are taken inside the human
body and are quite different from the images taken in daily life.
For example, MIS images contain abundant specular reflections,
homogeneous areas, smokes, and so on. Much research has been
presented to overcome those difficulties. Feature detectors and
descriptors designed for MIS images to overcome tissue de-
formation were presented in [1] and [17]. Puerto–Souza and
Mariottini proposed the novel hierarchical multiaffine (HMA)
[21], [22] and adaptive multiaffine (AMA) [23] algorithms to im-
prove the feature matching performance for endoscopic images.
They also developed a dense feature matching method to recover
the locations of image features on tissue surfaces [24]. Tissue
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Fig. 1. Illustration of vessel features: branching point (detected by RBCT)
and branching segment (detected by RBSD).

surface tracking and reconstruction for MIS have also been
widely studied and different methods have been introduced to
overcome the difficulties of tissue deformations and low texture
[3], [4], [6], [25]. More details on the optical surface reconstruc-
tion and tissue surface tracking methods for MIS are available
in [7] and [26].

The goal of this study is to design efficient algorithms that can
detect robust and repeatable MIS image features across different
viewpoints and different lighting conditions. It is desirable to
develop a feature detector that will turn the drawbacks of the in
vivo environment to advantages. We notice that blood vessels
are abundant within the intraabdominal environment, such as on
the abdominal wall and on the surface of tissue organs. The ex-
plicit extraction of blood vessels provides a large number of new
types of features for MIS image analysis. Blood vessel detec-
tion is one of the fundamental research topics in image-guided
surgeries and has many medical applications. For example, in
neurosurgeries, Ding et al. estimated the cortical displacement
based on blood vessel detection, and overcame the problem of
brain shift and deformation caused by pressure after the open of
dura [12]. In simultaneous localization and mapping (SLAM)
system, blood vessels can be represented as curves and used
to estimate camera motion. It has been known that curves are
more robust than points in camera motion estimation [27]. Since
vessels are attached to the surface of tissue surfaces and deform
with the tissue, the detection of vessels are crucial to recover
the tissue deformation [12]. In retinal image analysis, vessel
detection and segmentation in retinal images provide important
information to diagnose diseases.

Two types of blood vessel features are defined in this pa-
per: branching points and branching segments. Bifurcations
and crossing points are defined as branching points. We con-
sider a blood vessel segment that has branching points at both
ends as a branching segment. A blood vessel segment that has
only one branching point is called a half branching segment.
An example image with two branching points and one branch-
ing segment is shown in Fig. 1. Note that branching segments
are essentially curve segments and a pair of branch segment
correspondence can generate tens of pairs of point correspon-
dences. Our previous work in [28] proposed vesselness-based
circle test (VBCT) and vesselness-based branching segment de-
tection to extract the two types of vessel features based on
Frangi vesselness [29]. This study proposes a new way of
blood vessel enhancement, based on a new ridgeness mea-
sure (see Section II-B), which provides more accurate vessel
localizations. Based on the ridgeness representation, more ro-
bust methods of vessel feature detection are presented. Mean-

Fig. 2. Overview of the branching point and branching segment detection.

while, this study provides an in-depth analysis and thorough
evaluation of the proposed methods.

II. METHODS

A novel branching point detector, ridgeness-based circle test
(RBCT), and a novel branching segment detector, ridgeness-
based branching segment detection (RBSD), are introduced in
this paper. The overview of our proposed vessel feature detection
is shown in Fig. 2. First, image preprocessing, such as specular
reflection removal, is applied on the input image. Then, Hes-
sian matrix is calculated for each pixel, based on which Frangi
vesselness and ridgeness are computed. Next, circle tests are
performed to detect branching points. Last, the vessel tracing
technique is introduced to detect branching segments.

A. Detecting Candidate Branching Points

It is known that among all three channels in the RGB fundus
image, the green channel provides the best contrast between
vessels and the background [30]. Our experiments show that this
also applies to MIS images, and hence, only the green channel
is used in our method. Another special property of MIS images
is the abundant specular reflections that are view-dependent,
and therefore, can cause error to endoscope tracking if they are
picked up as feature points. Similar to [2] and [8], the specular
reflections are detected as the pixels whose intensities are larger
than a global threshold. In addition, their 3 × 3 neighbors are
also marked as specular reflections.

The scale-space representation of an image I (green chan-
nel) is L(x, y, σ) = G(x, y;σ) ∗ I(x, y), where G(·;σ) is a 2-D
Gaussian function with standard deviation σ, and ∗ represents
convolution operation. A Hessian matrix is calculated for each
pixel in each image level of the scale space, as shown in (1). Note
that, in this paper, the scale space is only used during the calcu-
lation of Frangi vesselness [29] and ridgeness (see Section II-B)
and all the remaining calculation is based on the single Frangi
vesselness image or the ridgeness image.

H =

⎡
⎢⎢⎣

∂2L

∂x2

∂2L

∂x∂y

∂2L

∂y∂x

∂2L

∂y2

⎤
⎥⎥⎦. (1)
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TABLE I
EIGENVALUES ANALYSIS TOWARD VESSEL AND BRANCHING

POINTS(0 < λ1 < λ2 ). L: LOW, M: MIDDLE, H: HIGH

λ1 λ2 pattern

L L background noise
L H dark tubular structure
M H branching point and spur
H H blob, specular reflection

The eigenvalues of the Hessian matrix are denoted as λ1 , λ2 and
eigenvectors V1 , V2 . Negative eigenvalues indicate bright tubu-
lar structures and positive eigenvalues represent dark tubular
structures [29]. In this study, since the vessels are dark on MIS
images, the negative eigenvalues are removed and the eigenval-
ues are sorted so that 0 < λ1 < λ2 . It is known that the absolute
values of the two eigenvalues represent the intensity variances
of two orthogonal directions. The tubular structure has a small
λ1 because the variance along the vessel direction is small. At
the endpoint of a vessel, the intensity variance is large along the
vessel. The branching point can be considered as the connec-
tion of three or four vessel segments, and hence, it has a larger
λ1 than other points on the vessels. Blob has a large intensity
variance in almost every direction, therefore, it has the largest
λ1 . Similar to [29], the relationship of eigenvalues and the pixel
type is summarized in Table I.

To detect bifurcations, Baboiu and Hamarneh presented
three measures with similar performance: λ1 , λ1 · λ2 and
1 − exp(−2 · (λ1/λ2)2) [31]. The feature detector with the sec-
ond measure is actually a variant of the aforementioned Hessian-
affine detector. Those measures are sensitive to noise and have
a very high false positive detection rate, because many other
structures also have high responses to those measures, such as
blobs, specular reflections, and spurs. Therefore, it is difficult
to distinguish branching points from other structures with those
measures. In this study, the candidates of branching points are
defined as: λ1 > λ1min and Ridgeness > Rmin for a ridgeness
image that we introduce later in Section II-B. As an example,
the λ1 image and λ2 image are shown, respectively, in Fig. 3(b)
and (c).

B. Blood Vessel Enhancement: Ridgeness

Based on the well-known Frangi vesselness [29], a new blood
vessel enhancement technique is introduced in this section,
which is referred to as “ridgeness” in this paper. Different from
the thick representation of vessels in the Frangi vesselness, we
look for ridge pixels that achieve single-pixel width. Here, the
width of ridges is defined as the number of pixels in the direction
of the eigenvector V2 . For completeness, the definition of the
Frangi vesselness is as follows:

V (σ) = exp
(

λ2
1/λ2

2

2 ∗ β2

)
·
(

1 − exp
(
−(λ2

1 + λ2
2)

(2 · c2)

))
(2)

where V stands for Vesselness, β and c are soft thresholds from
[29].

The ridge in a 2-D image is a good approximation of the ves-
sel center line and has been extracted for vessel segmentation
[32]. Compared with the vessels in the vesselness image, the

Fig. 3. Illustration of eigenvalues of Hessian matrix (0 < λ1 < λ2 ). (a) orig-
inal image. (b) binary λ1 image (red). (c) binary λ2 image (white). (d) λ1 image
(red) overlaid on top of λ2 image (white). Note that for better visualization, both
λ1 and λ2 have been binarized ( 1 for positive values and 0 for negative values)

Fig. 4. Comparison of (a) binary ridge image and (b) our ridgeness image.
Zooming in is recommended to see the broken branching points and single-
pixel-width ridges.

ridges are thinner and clearer. In [32], ridges are defined as pix-
els where the first derivative of the raw image intensity changes
sign in the direction of the eigenvector V2 (across the vessel).
One example of the detected binary ridges based on the afore-
mentioned definition is shown in Fig. 4(a). Since a small amount
of intensity change might flip the sign of the first derivative, the
aforementioned definition tends to detect massive “ridges” with
many false positives, which include tiny vessels and background
noise, as shown in Fig. 4(a). The width of the detected ridge is
two pixels under this definition. Since the goal of our method
is to robustly and repeatedly detect vessel features, the “false”
ridges from the background need to be filtered out. As shown
in Table I, both eigenvalues of pixels from background noise
are small. Therefore, instead of using the binary ridges directly,
the pixels of the ridges are first weighted by their corresponding
vesselness values. The obtained measures for ridges are called

Ridgeness(x, y, σ) = Vesselness(x, y, σ)

· abs{sign(�I(x + εu2 , y + εv2 , σ))

− sign(�I(x − εu2 , y − εv2 , σ))}/2

(3)



1144 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 62, NO. 4, APRIL 2015

where � is the gradient operator, (u2 , v2)T = V2 and ε = 1.0
pixel. Up to now, the width of the detected ridge is mostly two
pixels. To obtain more accurate single-pixel width ridges, each
ridge pixel is further required to be the local maximum in the
direction of the eigenvector V2 . The final definition of our new
ridgeness measure is shown as

R(·) =

{
R(·) if R(x ± εu2 , y ± εv2 , σ) < R(·)
0 otherwise

(4)

where R stands for Ridgeness and R(·) = Ridgeness(x, y, σ).
As an example, the binary ridge image and the ridgeness

image are shown in Fig. 4(a) and (b), respectively. In the rid-
geness image, the background noise has been greatly reduced
and the ridges now have a single-pixel width. However, in both
the binary ridge and ridgeness images, many vessels are broken
at branching points, referred to as “broken branching points”
for clarity. Therefore, many segmentation-based methods are
not able to detect broken branching points. As we show in
Section II-C, our branching point detection methods are based
on comparing pixels along the circle around the candidate points.
Therefore, our method is still able to detect the broken branching
points. The ridgeness value on the circle is shown in Fig. 6(b).

C. Branching Point Detection (RBCT)

Similar to [31], the detected candidates of branching points
might contain blobs, specular reflections, branching points, and
spurs. This section focuses on how to further distinguish branch-
ing points from the others. The major differences are their local
structure patterns. One distinctive characteristic of branching
points is that they have three or four connecting vessels. Many
vessel segmentation methods have been proposed [33] and the
branching points can be identified after the vessels are success-
fully segmented. Compare with those methods, the methods
proposed in this paper have the advantage that they do not rely
on any image segmentation techniques. Therefore, the proposed
method do not need to solve optimization problems required by
many image segmentation methods, such as [34]. Inspired by
FAST feature point detector [13], we propose to place a circle
centered at each candidate point on the ridgeness image and
examine the ridgeness value and intensity of each point along
the circle to determine whether it is a branching point or not.
For clarity, this process of using a circle is termed as “circle
test.” Fig. 5 illustrates the idea of the circle test at a branching
point. A new method, RBCT, is introduced in this section to de-
tect branching points by performing circle tests on the ridgeness
image.

When a circle is placed at the branching point on a ridgeness
image, the circle will intersect with the vessels and result in a
special “white and black” pattern. Typically, for a bifurcation
point, the intersections are three bright points or segments. Note
that even though the ridges are single-pixel-width, the intersect-
ing segment of a ridge and a circle might still have more than
one pixel. If the intersecting segment is only one pixel, the pixel
is defined as a peak. Otherwise, the point with the largest ridge-
ness in the intersecting segment is defined as a peak. The circle
tests on binary ridge image and ridgeness image are shown in

Fig. 5. Typical example of a circle test at a branching point on (a) raw image,
(b) vesselness image, (c) binary ridge image, and (d) ridgeness image. As shown,
binary ridge image has too much noise. Vessels are thinner on the ridgeness
image than on the vesselness image.

Fig. 6. Ridgeness value of pixels along the circle around a branching point.

Fig. 5(c) and (d). As an example, the ridgeness values of the pix-
els along the circle are shown in Fig. 6. Note that a similar idea of
using peaks for vessel segmentation has been presented in image
crawlers [35], [36]. Similar to VBCT [28], multiple tests are em-
ployed at each pixel p on the circle: 1) p should be bright on the
ridgeness image (R(p) > Rpeak); 2) p should have similar inten-
sity with the center pixel (|I(p) − I(center)| < Isimilar); 3) the
middle point pm of two peaks should be black (R(pm ) = 0);
and 4) the number of peaks should be three or four. Note that
bifurcations and crossing points have three and four peaks, re-
spectively. Among those four tests, as long as one test is failed,
the algorithm will exit early to save computation. Because ves-
sels have different widths, to detect as many branching points as
possible, multiple circle tests with different radii are employed
in RBCT. An example of candidate branching points before and
after RBCT is shown in Fig. 7. The pseudo-code of RBCT with
one circle test is available in supplemental materials.

D. Connected Component Labeling and Nonmaximal
Suppression

Points that pass the circle test are not the final branching
points yet. Depending on the viewing conditions and image res-
olutions, blood vessels have various widths and it is difficult
to mathematically define a unique branching point. The circle
test has the locality property that the neighboring pixels have a
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Fig. 7. Candidate branching points (a) before and (b) after RBCT. Those
candidates are grouped into connected components.

similar probability of passing the test. Therefore, those points
that pass the circle test are grouped into different connected com-
ponents and each component actually represents one branching
point. The eight-neighbor definition is used here to label the
connected components with the two-pass algorithm [37]. Af-
ter each connected component has been identified, its center is
defined as the location of the branching point.

Different from corners that can be very close to each other,
branching points are much more sparse and are usually far from
each other. We further require that the distance between any two
branching points should be larger than or equal to a predefined
minimum distance. The minimum distance of branching points
is determined by multiple factors, such as the resolutions of
the images, the tissue-to-camera distances, and so on. Based
on the collected datasets as discussed in Section III-A, this
minimum distance is set to be 11 pixels (distancemin = 11) in
this paper. The minimum distance is ensured by nonmaximal
suppression with a 23 × 23 window. Since a large connected
component is more robust than a small one, the number of
points in each connected component is chosen as the score of
the corresponding branching point and used in the nonmaximal
suppression process.

E. Branching Segment Detection (RBSD)

In this section, we describe the procedure of vessel tracing
contained in RBSD. Since branching segment detection starts
and ends at branching points, our algorithm starts from each
branching point and initiates a vessel tracing process for each of
its corresponding vessels. The vessel tracing process is the core
of the branching segment detection, and our algorithm is based
on the binary mask of vessels, which is obtained by thresholding
the ridgeness image and is referred to as “ridge mask.” The ridge
mask has a single-pixel width in most areas, except the specular
reflections. The following discussion is based on the binary
ridge mask. The vessel tracing process is recursive and stops
under two conditions. First, another branching point is within a
five-pixel radius (radiusBS = 5), which means a branching seg-
ment has been detected. Second, there are no unvisited ridge
pixels, which results in a half branching segment.

Three key points need to be determined during the vessel
tracing process: the starting point, the next point, and the ending
point. First, the detected position of a branching point is not
directly used as the starting point, because the broken branching
point may not be on the vessel. The three or four peaks from the

Fig. 8. Illustration of the two-pass test vessel tracing process. (a) Explanation
of labels, (b) initial state, (c) state after first pass, (d) state after second pass.

circle test of each branching point are, therefore, chosen as the
starting points for tracing.

To determine the next point and the ending point, some spe-
cial points on the ridge mask have to be defined for clarity. A
“forwarding point” is a point that is white on the ridge mask and
has at least one white unvisited neighbor (under eight neighbor).
If a point, P, has a neighbor that is a forwarding point, this neigh-
bor is called “forwarding neighbor” of point P. One example of
forwarding point and forwarding neighbor is given in Fig. 8(b).
The key observation of our vessel tracing is as follows: given the
current tracing point P, after marking P’s neighbors as visited,
if P still has forwarding neighbors, we conclude that all these
forwarding neighbors are along the vessel and in front of P.

Based on this observation, the following two-pass tracing
algorithm is applied in each iteration. The first pass is to collect
all unvisited white neighbors of the current tracing point and
mark them as visited. The second pass is to find all forwarding
neighbors. If at least one forwarding neighbor is found, the next
point can be chosen as either one of them; otherwise, this is the
end of the current vessel tracing process. Regarding the ending
point, if no branching point is found at the end of the tracing, the
last point of the vessel tracing process is chosen as the ending
point; otherwise, another branching point is found and is chosen
as the ending point. The process of two-pass vessel tracing is
illustrated in Fig. 8. The detected branching segments (green)
and half branching segments (blue) are shown in Fig. 9(b) as an
example. The pseudo-code of the branching segment detection
is given in supplemental materials.

F. Computational Analysis and Run Time Results

Since RBCT is a part of RBSD, this section focuses on the
computational analysis of RBSD. There are three main com-
ponents in the calculation of RBSD: ridgeness, circle test, and
vessel tracing. First, based on (3) and (4), it can be seen that,
the calculation of vesselness accounts for the main computa-
tion of ridgeness. Note that 2-D version of Frangi vesselness
with three image levels is used in this paper. Its calculation con-
tains three Gaussian convolutions for each image level to obtain
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Fig. 9. The illustration of those vessel features detected by RBSD: branching
segments (green), half branching segments (blue), and branching points (cyan
dots).

TABLE II
RUN TIME OF DIFFERENT STEPS IN RBSD

Circle test Labeling Suppression Vessel tracing

0.562(s) 0.027(s) 0.088(s) 0.062(s)

“Labeling” Represents Connected Component Labeling.
“Suppression” represents Nonmaximum suppression. “S”
stands for second.

Hessian matrix and the calculation of eigenvalues in the 2 ×2
Hessian matrix for each pixel. Those calculations have been used
and analyzed in [16], [18], and [38] and can achieve real-time
speed with proper implementation. Second, circle tests are per-
formed on each candidate branching point, which is usually less
than 1% of the total number of pixels. Typically, one circle test
scans 64 pixels along the circle (11-pixel radius) and less than
six computer instructions are executed to scan one pixel. Third,
the proposed vessel tracing algorithm visits each ridge point
one time, at most, to detect all branching segments and half
branching segments.

The run-time tests of different steps in RBSD are performed
on a Intel core i5 CPU 650 (3.20 GHz) with 4.00 GB RAM. The
test data contains images with resolution 640 * 480 from an in
vivo MIS dataset (scene7 from the public Hamlyn dataset [39]
as introduced in Section III-A). The proposed methods have
been implemented using MATLAB. The average run time of
different steps for one image are reported in Table II. The results
with unoptimized MATLAB implementation in Table II show
that the proposed methods are fast and can potentially achieve
real-time speed with proper implementation, such as C/C++.
In addition, the proposed methods can be faster by exploiting
graphics processing unit (GPU), since the circle tests can be
independently executed.

III. EXPERIMENTS AND RESULTS

In this section, in vivo experiments were designed to evaluate
the performances of the proposed vessel feature detectors. Many
state-of-the art branching point detectors [40], [41], vessel de-
tection methods [33], [42], general feature point detectors have
been proposed in the community. Among them, the following
feature detectors were chosen based on the reports in [13] and

TABLE III
PARAMETERS OF STATE-OF-THE-ART FEATURE DETECTORS USED

IN THIS PAPER

Procedure Parameters

AFD sigma = 1.5, cornerness threshold = 0.2,
step=1.44, and number of scales = 7

DoG peak threshold = 0.008, edge threshold = 10
Hessian affine peak threshold = 0.0008, edge threshold = 10
FAST intensity threshold = 14 (range [0 255])
Sofka likelihood ratio threshold = 1.0

[17] and the availability of codes: VBCT [28], AFD [17], DoG
[19], Hessian affine [18], [31], FAST [14], and likelihood ra-
tio vesselness (referred to as “Sofka” in this paper) [42]. Note
that VBCT, RBCT, and Sofka were branching point detectors.
RBSD was a branching segment detector. The rest of them were
not specifically designed for vessel images and were referred to
as “general feature point detectors” in this paper. Those general
feature point detectors extracted different information from a
given image: intensity (FAST), first derivatives (AFD), and sec-
ond derivatives (Hessian affine, DoG). The implementations of
Hessian affine and DoG from VLFeat library [43] were adopted
in this paper. The parameters of the aforementioned methods
were chosen based on the datasets used in this paper and the
suggestions from the corresponding papers. Those parameters
were shown in Table III and were fixed in all the experiments.

The parameters used in RBCT and RBSD were selected based
on their performance on the datasets (see Section III-A) used in
this paper. During the detection of the branching point can-
didates, the following threshold values produced reasonable
amount of candidates and were able to detect most branch-
ing points: λ1min = 0.05, Rmin = 0.01. In the calculation of
the Vesselness, the following values were adopted based on
the suggestions of [29]: σ = {3, 4, 5}, β = 0.5, and c = 15.
In the process of circle test, the threshold values were set as:
Rpeak = 0.01, Isimilar = 0.03(intensity range[0 1]), which fil-
tered out high percentage of outliers and kept most branch-
ing points. Two circle tests were shown enough to detect most
branching points in our datasets and their radii were 7 and 5
pixels, respectively.

The objective of the experiments is to evaluate, in MIS im-
ages, how distinctive vessel features detected by RBCT and
RBSD are compared with general feature points (corners and
blobs). Note that RBCT is a part of RBSD. They are treated as
a unit and are compared with the others in all the experiments.
Branching points, branching segments, corners, and blobs are
different types of features and they have different densities in the
images. The minimum distances of branching points, branching
segments, and general feature points were defined as 11 pixels,
0 pixel, and 1 pixel, respectively. To have a consistent com-
parison, we applied nonmaximum suppression with 11-pixel
radius for all the methods, including branching segments so that
the minimum distance between any two feature points was at
least 11 pixels. To apply nonmaximum suppression, scores in-
dicating the significance of feature points, such as cornerness
scores, should be provided. Note that no scores were provided
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Fig. 10. Sample images of the seven in vivo video clips.

for points from DoG, to run the nonmaximum suppression, all
points were considered to be equally important by assigning the
same cornerness score.

A. In Vivo Datasets and Ground Truths

Our datasets contained seven in vivo video clips represent-
ing different imaging conditions in different surgeries. Sample
images were shown in Fig. 10. Those videos were taken during
the laparoscopic colon surgeries of three different patients. They
were named in the order from scene1 to scene7. In scene1,
scene2, scene5, and scene6, the laparoscope faced toward the
abdominal wall and was moved along the abdominal wall. Be-
cause the abdomen was insufflated in MIS, those areas of the
abdominal wall were approximately flat. Scene3 and scene4
were small flat tissue surfaces within the anterior pelvis, where
the uterus was removed. In those two video clips, the stereoscope
rotated and zoomed in and out on top of the scenes. Scene7 was
from the public Hamlyn dataset [39], where the endoscope was
moved to explore the scene.

One important property of a feature point detector is that
the same scene point can be detected repeatedly from different
viewpoints. Homography mappings have been widely used in
the literature to measure this property. To have global homog-
raphy mappings, it is required that either the scenes are mostly
planar or the camera is rotated around its center. The above
datasets have been specially chosen in order to have global ho-
mography mappings: the first six scenes are mostly planar, and
in the seventh scene, the camera is mainly rotated around its
center.

The ground-truth homography mappings for each pair of im-
ages in each scene were obtained by manually selecting point
correspondences between the image pairs. In each scene, one
frame was chosen as the reference image and the planar area
of the scene was selected as the region of interest. Each image
is coupled with the reference image to form image pairs. In
each pair of images, 20 well-distributed point correspondences
between the reference image and the others were manually se-
lected by experienced observers. One example of the manually
selected ground truth is shown in Fig. 11. The selected corre-
spondences were later used to calculate the ground-truth ho-
mography mappings following the methods used in [14] and
[18]. Due to the similarity between successive frames and the
large efforts required by the manual point selection, those video
clips were uniformly sampled to reduce the manual work. The
number of selected frames for each video clip is shown in the
fifth column of Table IV. The errors of homography mappings

Fig. 11. Illustration of selected ground-truth point correspondences (cyan)
across different views in scene 3.

TABLE IV
SUMMARY OF DATASETS USED IN THIS PAPER

Datasets Source Homo. Length Frame Resolution Homo.
type num. error

Scene1 patient1 planar 3s 50 1280 × 720 1.6 ± 0.8
Scene2 patient1 planar 3s 50 1280 × 720 1.5 ± 0.7
Scene3 patient2 planar 5s 53 1240 × 800 2.0 ± 1.0
Scene4 patient2 planar 3s 45 1240 × 800 2.0 ± 1.0
Scene5 patient3 planar 8s 22 720 × 480 1.7 ± 0.9
Scene6 patient3 planar 8s 14 720 × 480 1.6 ± 0.7
Scene7 [39] rotation 23s 49 640 × 480 1.9 ± 0.9

“Planar” means the scene is planar. “Rotation” represents that the camera motion is ro-
tation only. “Frame num.” indicates how many frames are kept after sampling. “Homo.
error” denotes the average errors of the ground-truth homography mappings. The unit of
Homographic error is pixel.

for each scene are reported in the last column of Table IV. Note
that the errors of homography mappings indicate whether it is
valid or not to use those mappings for generating ground-truth
feature point positions.

Note that the common accuracy of homography mappings
used for general feature point detectors is 1.5 pixels [13], [16],
which is more accurate than that of our homography mappings
as shown in Table IV. This is because the constraints in the
MIS environment make it extremely difficult to obtain the exact
homography mapping between two MIS images. As shown in
the last column of Table IV, the homography errors are smaller
than 3 pixels. With inaccurate homography mapping, each point
in the first image is mapped to a 3-pixel-radius disk in the second
image. Since those disks should not overlap in the second image,
the minimal distance of any two feature points should be larger
than 6 pixels. Our feature points have minimal distance of 11
pixels, which are larger than 6 pixels. Therefore, the obtained
homography mappings are accurate enough.

B. Repeatability and Number of Points

The repeatability and total number of detected points are two
widely used measures to evaluate the performance of feature
detectors [13], [16]. To this end, repeatability is defined as the
percentage of points that are detected in images from different
viewpoints. Because there is noise in the detected positions of
the feature points, two points x1 , x2 are defined to correspond
to each other if |x2 − H · x1 | < δ, where H is the homography
mapping and δ is a predefined threshold. Based on the accuracies
of the ground-truth homography mappings shown in Table IV,
δ is set to be 3.5 pixels for all feature point detectors. Note that
this is different from [13], [16], and [18], where the δ is about
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Fig. 12. Repeatability scores of different methods in the seven scenes. The
overall performance is shown on the right. The details of the repeatability scores
for each frame in each scene are displayed as repeatability curves and have been
included in the supplemental materials.

1.5 pixels. In this paper, the repeatability is defined as

repeatability =
m

min{n1 , n2}
(5)

where m is the number of points detected in both images, n1 is
the number of points detected in the first image, and n2 is the
number of points detected in the second image, whose corre-
sponding points are also visible in the first image. We note that
the repeatability measure might be biased against those detectors
that detect more points.

The repeatability of different feature detectors on the seven
scenes is shown in Fig. 12. The overall performance for each
method is displayed at the right in Fig. 12. As shown, vessel
feature detectors outperform the general feature point detectors
having the highest average repeatability scores under camera
translation and rotation. The major reason is that the general
feature points are small in scale and less distinctive under large
camera motions. On the other hand, vessels are among the most
distinctive structures in MIS images and are resistant to large
camera motions. Note that FAST does not perform as well as
expected. One possible reason is that comparing with general
images, the endoscopic images are more noisy due to the special
camera sensor and imaging environment in MIS. As pointed out
in [13], FAST is designed to compare as few pixels as possible,
and is therefore, less robust toward the noises in MIS images.
In scene7, the camera is mainly rotated around the optical axis
and the camera barely changes its viewpoint. The images in
scene7 have small perspective changes, and therefore, all feature
detectors have better repeatability scores.

The number of points detected by the state-of-the-art feature
point detectors is shown in Fig. 13. The average number of
points detected by each method is displayed on the right in
Fig. 13. Due to the sparsity of branching points, the number
of branching points is the fewest among all methods. On the
other hand, RBSD is essentially curve-segment detector, which
detects not only the branching points but also the points along
the vessel segment. Therefore, RBSD usually detects much more
points than general point detectors. We notice that it is unfair
to compare the number of points detected by different types of
feature detectors. Therefore, the number of points detected by
RBSD is separately given in Table V. Reporting the numbers of
points detected by RBCT and RBSD is to verify that the small
number of available branching points can be compensated by
the large number of pixels detected along the vessel provided

Fig. 13. Number of feature points detected by different feature point detectors
in the seven scenes. The overall performance is shown on the right. Note that
RBSD is a branching segment detector, which is different from general point
detector and usually detects much more points as shown in Table V.

TABLE V
TOTAL NUMBER OF POINTS IN ALL BRANCHING SEGMENTS

DETECTED BY RBSD

S1 S2 S3 S4 S5 S6 S7 Average

5661 6296 5749 5430 2204 1098 1177 3945

“S” stands for scene.

by RBSD. In addition, vessel features can be combined with
general feature points to extract more rich information from the
images.

It is useful to see how many human-recognizable branching
points can be detected by the proposed branching point detec-
tor. Four representative images are selected from each of the
seven scenes and the human-recognizable branching points are
manually selected by experienced human subjects. For each
image, the sets of manually selected branching points and the
automatically detected ones are denoted as S1 and S2 , respec-
tively. The coverage is defined as the percentage of ground-truth
branching points that is automatically detected: |S1 ∩ S2 |/|S1 |,
where ∩ represents intersection of two point sets. The average
coverage for RBCT is 70%, which means, in average, 70% out of
human-recognizable branching points is automatically detected.

C. Patch Matching Correctness

One target application of branching point detection is en-
doscope localization and mapping, in which both feature point
detection and matching are crucial. In this section, a correlation-
matching-based patch search process from the parallel tracking
and mapping (PTAM), called “fixed range image search” [44],
is adopted, and different feature point detectors are applied and
compared. Since the goal here is to compare different feature de-
tectors only, to be fair, the same feature matching method needs
to be used for all feature detectors. Note that SIFT descriptor
is not used for DoG during the point matching process. In the
patch search process, a high matching correctness indicates that
the feature point detector has high repeatability and the im-
age patches extracted are distinctive for matching purpose. The
patch search procedure takes the first image as the current frame
and assumes the second image as the frame that has been saved
in the endoscope localization system. The feature points of the
second image are treated as known to the system and are called
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Fig. 14. Patch matching correctness of different methods in the seven scenes.
The overall performance is shown on the right.

“map points” [44]. The goal is to identify those map points in
the current frame.

The patch search process contains a couple of steps. First,
since only the patch search process from PTAM is employed
rather than the whole system, the temporal information from
previous frames is preserved by defining a search area in the
current frame for each map point. For each map point P in the
saved frame, its corresponding point Q in the current frame as
ground truth can be obtained through homography mapping.
The search area of P in the current frame is a disk centered
at Q, whose radius is 1/20 of the image width. Second, the
feature points in the current frame that are within this fixed
range are chosen and referred to as the nearby points. The
21 × 21 local patch of each nearby point is compared with
the same size local patch of P. Third, similar to [44], an affine
warping, which is obtained from the ground-truth homography
mapping, is applied to the patch of P to take care of the view-
point change. After warping, zero-mean sum of squared distance
(ZSSD) is calculated for each pair of patches. Finally, a nearby
point is considered as a match if its ZSSD value is the minimum
and the value is smaller than the predefined threshold of 0.02 in
this paper for the normalized intensity range [0 1]. A match Q′ is
defined to be correct if |Q′ − Q| < 3.5 pixels. The correctness
of the SSD matching is defined to be the ratio of the number of
correct matches over the number of total matches.

The patch matching results are given in Fig. 14. Vessel fea-
tures perform better than the general features again, which
further verifies the distinctiveness of vessel features. In patch
matching, VBCT and RBCT have higher matching correctness
scores than RBSD. This is because the patterns of branching
points are more distinctive than the patterns of vessel points
(except the endpoints) in branching segments. Note that in
scene4, the patch matching correctness of AFD is significantly
better than all the others. One reason is that the specular reflec-
tions are strong and abundant in scene4. Since our homography
mappings are not accurate enough, the movements of the points
on the specular reflections cannot be captured. Therefore, spec-
ular reflections are mistreated as fixed textures and those points
on the boundaries of specular reflections are misclassified as
correct matches. One example of patch matching result with
RBCT is shown in Fig. 15.

IV. CONCLUSION AND FUTURE WORK

It is well known that feature extraction in MIS images is dif-
ficult due to the special imaging environment. The existence of

Fig. 15. One example of correlation-based patch matching using “fixed range
image search” [44] with feature detector RBCT. Matches with error less than 3.5
pixels are classified as correct matches (cyan dots). The others are classified as
incorrect matches (red triangles). The images are from the seventh scene. Note
that the detected branching points that are not matched by the correlation-based
patch matching method are not displayed.

abundant blood vessels in intraabdominal MIS images provides
a solution to overcome this problem. This paper proposes to
extract branching segments as features and has quantitatively
verified their distinctiveness. Moreover, the vessel features can
be combined with general feature points since they extract dif-
ferent structures in the images. Therefore, RBCT and RBSD of-
fer researchers new types of distinctive features for endoscopic
image analysis. The evaluation codes, the codes of RBCT and
RBSD, and the datasets used in this paper are available online
at http://rpal.cse.usf.edu/project1/index.html.

The distinctive vessel features can have many applications
for endoscopic images. When stereoscope is available, as in da
Vinci system, those detected vessel features can be matched in
stereo images using traditional correlation-matching methods
[6] and the 3-D structures of those vessels can be recovered.
Similarly, in visual SLAM systems, vessel features can be de-
tected in different frames and matched using correlation-based
patch matching methods [44]. The matching of vessel features
in different views allows endoscope to localize itself and also
enables the recovery of the 3-D vascular structures after the
endoscope poses are successfully calculated. More importantly,
those 3-D vessels recovered from different views can be merged
together to obtain a large 3-D vessel network, which provides a
very good 3-D structure of the whole abdominal area and will
be very beneficial for the coregistration with preoperative CT
data. The intraoperative structure recovered by the endoscope
also sheds light on solving the difficult deforming or dynamic
coregistration problems [3], [12].

In stereo reconstruction and visual SLAM, vessel features can
be similarly matched with the traditional correlation-based patch
matching methods. To better exploit the properties of vessel
features, in our future work, we plan to design a specialized
matching method for vessel features, which can take advantage
of the branch and vessel directions.

Due to the nature of large-scale features of branching points,
the current location error of automatic localization of match-
ing points is about 1.6 ± 0.7 pixels. This error is larger than
general feature point detectors, which typically achieve 1-pixel
accuracy. The larger error of branching points introduces uncer-
tainty to its applications, such as pose estimation and 3-D re-
construction. In the future, we will further refine the branching
point location accuracy based on the local neighbor information.

In order to further speed up the circle test in RBCT, one future
research direction is to add early termination so that unnecessary
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computations can be avoided. Another research direction is to
incorporate the supervised learning techniques [13] into vessel
feature detection.
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