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Abstract—Current practices of assessing infants’ pain depends
on the observer’s subjective and potentially inconsistent judgment
and requires continuous monitoring by care providers. There-
fore, pain may be misinterpreted or totally missed leading to
misdiagnosis and over/under treatment. To address these short-
comings, current practices can be augmented with a machine-
based assessment system that monitors various pain cues and
provides an objective and continuous assessment of pain. Al-
though several machine-based pain assessment approaches have
been introduced, the majority of these approaches assess pain
based on analysis of a single pain indicator (i.e., unimodal). In
this paper, we propose an automated multimodal approach that
utilizes a combination of both behavioral and physiological pain
indicators to assess infants’ pain. We also present a unimodal
approach that depends on a single pain indicator for assessment.
Recognizing pain using a single indicator yielded 88%, 85%, and
82% overall accuracies for facial expression, body movement,
and vital signs, respectively. Combining facial expression, body
movement, and changes in vital signs (i.e., the multimodal
approach) for assessment achieved 95% overall accuracy. These
preliminarily results indicate that utilizing both behavioral and
physiological pain indicators could provide a better and more
reliable assessment of infants’ pain.

I. INTRODUCTION

Pain is defined as: “The unpleasant sensory and emotional
experience caused by an actual or a potential tissue damage
or injury” [1]. The assessment of pain helps care providers to
understand patients’ medical conditions and develop suitable
treatments. However, the assessment of pain in infants can be
difficult, because it requires a continuous monitoring by care
providers and depends on the observer’s bias. Care provider
misinterpretation or lack of attention to infants pain may lead
to misdiagnosis and over or under treatment. Therefore, it is
crucial to utilize an accurate and continuous assessment of
infants’ pain.

Several traditional pain assessment scales have been de-
veloped to evaluate pain and estimate pain intensity. The
most popular assessment scale is the patient self-evaluation
in which the patient provides a verbal description of his/her
pain intensity. Another scale to nonverbally communicate
pain is the Visual Analog Scale (VAS), which has faces or
numbers for different levels of pain [2]. Although the verbal
and non-verbal self-evaluation of pain is the gold standard
for assessing pain, they are not applicable for individuals

Fig. 1. Tree diagram for various pain indicators.

with communicative/neurological impairments (e.g., dementia)
and infants. To assess pain in this population, care providers
observe specific behavioral and physiological (e.g., changes in
vital signs) indicators that are related to pain [3], [4]. Figure
1 summarizes the common pain indicators that are considered
when assessing infants’ pain.

Assessing pain using the traditional indicator-based scales
may not be efficient or reliable since it is noncontinuous and
threatened by variation in clinical judgment, which can lead
to poor treatment. Studies have found that poor treatment of
infants’ pain might cause permanent neuroanatomical changes,
developmental, and learning disabilities [5], [6]. A possible
way to provide an objective and continuous pain assessment
is to develop an automated system that observes and analyzes
different behavioral/physiological indicators related to pain.
This system can be used by care providers in the neonatal
intensive care unit (NICU) to continuously assess pain. It
can also be used in homes as a pain-monitoring system or
in the developing countries where medical professionals and
resources are scarce.

Several works have been presented to assess infants’ pain
using signal processing and machine learning techniques. One
of the first works, known as the COPE project, to assess
infants’ pain based on analysis of facial expressions is pre-
sented in [7]. The accuracy of classifying facial expressions as
pain/no-pain expression using standard classification methods
(e.g., SVM) was approximately 88%. Other works that used
COPE dataset to analyze pain expressions in infants are
presented in [8], [9]. A noticeable limitation of these works is
the use of a 2D static images dataset (COPE) to classify facial
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expressions of pain. Static images ignore the expression’s
dynamic and temporal information and therefore developing a
method to dynamically measure and classify pain expression
was needed.

Zamzmi et al. [10] presented an optical-flow based al-
gorithm to detect and classify pain expressions from video
sequences of infants undergoing acute painful procedures. The
algorithm yielded 96% accuracy in classifying facial expres-
sions as pain/no-pain expressions using K-nearest-neighbors
classifier. Another behavioral pain indicator that has been
used to assess pain automatically is crying [11]–[13]. We are
not aware of any existing machine learning based approach
that analyzes infants’ body movement automatically for the
purpose of assessing pain.

Various methods are presented to assess infants’ pain based
on analysis of physiological pain indicators. Lindh et al. [14]
proposed a method to assess pain in infants undergoing heel-
lancing procedure by analyzing heart rate variability (HRV)
and heart rate mean (HRmean) in frequency domain. The
results from the statistical analysis performed on the extracted
heart rate data showed a significant increase in HRmean

during the heel-squeezing painful event. Other automated
methods that analyze physiological indicators of pain can be
found in [15]–[17]. As a side note, pain recognition using
machine learning methods is a wide area of research, but since
this paper presents a method for analyzing infants’ pain, we
focus primarily on related works that analyze pain for infants
population.

Although there are several machine learning based ap-
proaches to assess infants’ pain, existing approaches utilized
a single pain indicator (i.e., unimodal) for assessment. Studies
[18], [19] have found that pain causes behavioral and physio-
logical changes and suggested to consider both changes when
assessing infants’ pain. Also, it has been found [18], [20]
that physiological changes such as an increase in heart rate
are less specific for pain (i.e., they can be associated with
other emotional conditions such as discomfort or stress), and
thus are not sufficient for pain assessment. Additionally, some
infants have limited ability to behaviorally express pain due to
specific disorders or physical exertion (e.g., exhaustion after
a surgery). Therefore, we believe it is important to consider
both behavioral and physiological pain indicators for assessing
infants’ pain.

In this paper, we present an automated approach to dynam-
ically measure and assess pain in infants based on analysis of
behavioral and physiological pain indicators. Specifically, we
present a decision-level fusion approach that combines infants’
facial expression, body movement, and vital signs modalities
to classify the infant’s state into no pain, moderate pain, or
severe pain. As far as we know, we are the first to propose
a multimodal machine learning based approach that combines
several behavioral and physiological modalities for automatic
recognition of infants pain. Figure 2 depicts a general overview
for the multimodal pain assessment system (MPAS) we are
proposing.

Fig. 2. Multimodal Pain Assessment System (MPAS)

II. METHODOLOGY

A. Facial Expression

Our method to evaluate facial expressions exploits the non-
rigid facial motions that occur during facial expressions to
estimate the magnitude of facial tissue deformations (i.e.,
strain magnitude) [21], [22]. There are two ways to estimate
the strain magnitude: (i) integrate the strain definition into the
optical flow equations, or (ii) derive strain directly from the
flow vectors. Since the second method allows post-processing
the flow vectors before calculating the strain (i.e., reduce the
effects any errors incurred during the optical flow estimation),
it is used to estimate the optical strain. The equations to
compute the flow vectors and the strain magnitude (εM ) can
be found in [21], [22].

The strain-based method that is used to detect facial ex-
pressions of infants consists of two main stages: (i) face
tracking, and (ii) expression segmentation. Figure 3 provides
an overview of the strain-based method to detect and extract
facial expressions’ features.

In the face tracking stage, the infant’s face in each video
frame is detected using a Viola-Jones face detection method
[23]. We built an infant’s face classifier (i.e., using a cascade
of boosted Haar-like classifiers) trained with images of in-
fants’ face under different poses and occlusions. The classifier
was able to successfully detect faces with frontal/near-frontal
views. Faces with severe poses/strong occlusions were missed
and thus are excluded from further analysis. After the face
images were obtained, we applied the facial landmark points
algorithm implemented in [24] to extract 68 points. These
points are used then to align the face, crop it, and divide it
into four regions as illustrated in Figure 3.

The algorithm for facial expressions segmentation consists
of the following steps. First, optical flow is calculated between
consecutive frames of a video for each region of the face.
Then, optical strain is estimated over the flow fields to generate
the strain components of the strain tensor. Next, the strain
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Fig. 3. Facial expression segmentation based on strain analysis

magnitude (εM ) is calculated for each region of the face along
with the overall face region; each region generates a sequence
corresponding to the amount of strain observed over time.
Lastly, a peak detector method is applied to the strain plots
obtained for each region from I to IV to detect the points
of maximum strain, which correspond to facial expressions.
To form the features vector for classification, we compute the
mean of the strain values for each of the segmented expres-
sion (i.e. StrainOverallmean, StrainImean, StrainIImean,
StrainIIImean, and StrainIVmean).

B. Body Movement

Our method to detect and evaluate body movement depends
on the motion image. Motion image is a simple and efficient
method to estimate an infant’s body movement in video
sequences [25]. It identifies the change of each pixel value
between consecutive frames. Each pixel in the motion image
M(x, y) has a value of 0 to represent no movement or 1 to
represent movement.To analyze the infant’s body movement,
we computed the motion images between consecutive video
frames. Then, we applied a median filter to reduce noise and
get the maximum visible movement.

In assessing infants’ pain, care providers focus on observing
the amount of body movement along with the speed and
pattern. Hence, we used the amount of body motions in each
video frame as the main feature for analyzing infants’ body
movement. This feature is computed as follows:

Am =
1

NxNy

Nx∑
x=1

Ny∑
y=1

M(x, y) (1)

Where Nx and Ny represent the image’s height and width.
Figure 4 displays the amount of motion as a curve plotted over
frames for an infant in a pain state; the curve that represents the
amount of motion for the same infant in normal state ranges
from 0 to 0.0005. To find the total amount of motion in each
video sequence, we summed Am as:

Totalmotion =

F∑
k=1

Ak
m (2)

Where F is the total number of frames. For classification,
thresholding is applied on Totalmotion to classify body move-

Fig. 4. Motions Am per frame for an infant in a pain state

ments as pain related movement (score of 1) or no pain related
movement (score of 0).

C. Vital Signs

The steps to assess pain using vital signs (VS) data are
summarized as follows: 1) VS data (i.e., heart rate HR,
respiratory rate RR and oxygen saturation levels SpO2)
were extracted from the VS monitor; 2) These numbers
were filtered and averaged to get three features, which are
HRmean, RRmean, and SpO2mean.

III. IMPLEMENTATION AND RESULTS

In this section, we discuss our dataset and the recording
procedure. Then, we describe the score predication for various
pain indicators, namely facial expression, body movement,
and vital signs. We also present unimodal and multimodal
approaches to assess infants’ pain and report their results.

A. Data

Various behavioral and physiological pain indicators were
recorded in NICU at Tampa General Hospital. Specifically,
facial, vocal, and vital signs data were recorded for eighteen
infants (Dataset1); age of the infants was 36 [32, 41] (avg.
[min, max]) gestational weeks. Twelve infants out of the
eighteen had their body (i.e., arms and legs) recorded along
with the facial, vocal, and vital signs data (Dataset2).

The recorded infants were receiving routine painful proce-
dures (e.g., heel lancing) during their hospitalization. Prior
to recording the painful procedure, informed consent was
obtained from the infant’s parents. The painful procedure’s
recording is divided into seven time periods:

• T0: 5 minutes pre-procedure to provide the baseline state.
• T1: actual painful procedure (e.g., heel lancing).
• T2: 1 minute after the completion of the painful proce-

dure.
• T3: 2 minute after the completion of the painful proce-

dure.
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• T4: 3 minute after the completion of the painful proce-
dure.

• T5: 4 minute after the completion of the painful proce-
dure.

• T6: 5 minute after the completion of the painful proce-
dure.

NIPS (Neonatal Infant Pain Scale) pain scores were docu-
mented by a trained nurse at the beginning of each time period
to provide the ground truth labels. The score for each of the
pain indicators is 0 or 1 except for crying pain indicator, which
is scored as 0, 1, or 2. After documenting the score for each
of the pain indicator, the scores were combined to predict the
infant’s final state as no pain, moderate pain, or severe pain.
In this paper, we analyze infants’ pain using only facial, body,
and vital signs data; we are currently developing a method to
analyze infants’ sounds and incorporate it as a modality for
pain assessment.

B. Infant Pain Assessment

Using the above-described datasets, we predicted the score
for three pain indicators: facial expression (score of 0 or 1),
body movement (score of 0 or 1), and vital signs (score of 0
or 1). Then, we used each of these indicators individually (i.e.,
unimodal) to predict the infant’s final state as no pain (class
0), moderate pain (class 1), or severe pain (class 2). In the
multimodal approach, a decision-level fusion of behavioral and
physiological pain indicators is used for pain assessment; this
automated and multimodal approach is similar to the current
practice for assessing infants’ pain in NICU. Both unimodal
and multimodal approaches along with the score predication
are discussed below.

1) Score Prediction: To classify the facial expression of
infants as pain expression (score of 1) or no pain ex-
pression (score of 0), the strain-based algorithm discussed
previously (Section II-A) is applied to extract five features
(i.e., StrainOverallmean, StrainImean, StrainIImean,
StrainIIImean, and StrainIVmean) for each expression in
Dataset1. The extracted features are then used to train different
classifiers, namely K-nearest-neighbors (KNN), support vector
machine (SVM), and Random Forest trees.

To evaluate the trained model and estimate its generaliza-
tion performance, we performed leave-one-subject-out cross-
validation (LOSOXV). For each training fold, feature selection
was performed to select the most relevant features. KNN
achieved the highest accuracy (91%) in classifying the fa-
cial expression as pain expression (score of 1) or no pain
expression (score of 0); no pain expressions are the expressions
occurred during no pain epochs. The first row of Table I shows
the performance measures. The confusion matrix is given in
Table II.

It is worth pointing out that the lower accuracy compared
to our previous work (96%) might be attributed to the model
evaluation method, which is LOSOXV. As discussed in [8],
LOSOXV evaluation method is considered more realistic for
pain assessment in clinical applications, but it can lead to
lower classification accuracy. Another reason might be the

TABLE I
PERFORMANCE FOR SCORE PREDICATION

Accuracy Recall Precision

Facial Expression 91% 87% 89%

Vital Signs 96% 97% 94%

Body Movement 92% 89% 90%

TABLE II
FACIAL EXPRESSION

N = 116 Score 0 Score 1

Score 0 85 4

Score 1 6 21

TABLE III
VITAL SIGNS

N = 116 Score 0 Score 1

Score 0 74 5

Score 1 0 37

TABLE IV
BODY MOVEMENT

N = 116 Score 0 Score 1

Score 0 66 3

Score 1 4 18

inter-infants variation in expressions due to their age, health
status, or habituation of the infant to the pain stimulus.

For vital signs analysis, Dataset1 is used to extract three
features (i.e., HRmean, RRmean, and SpO2mean) as de-
scribed in section II-C. These features are then used to train
Random Forest trees. For the classifier evaluation, LOSOXV
was performed as discussed above. The second row of Table
I shows the classifier performance; the confusion matrix is
shown in Table III.

To predict the score of the body movement indicator, the
total motions Totalmotion feature is extracted from each video
sequence (i.e., pain/no-pain epochs) in Dataset2. Thresholding
is then applied on this feature to predict the score. The
accuracy of classifying the infant’s body movement as pain
related movement (score of 1) or no pain related movement
(score of 0) is 92% (Table I, third row). The performance
is shown using a ROC curve (Figure 5) comparing the true
positive rate (TPR) and false positive rate (FPR), by varying
the threshold; the confusion matrix is presented in Table IV.

To summarize, the results of predicating the scores for facial
expression, body movement, and vital signs pain indicators
are presented. The overall accuracies are 91% and 92% for
facial expression and body movements, respectively; vital
signs achieved the highest accuracy, which is 96%. It is
important to note that this result is for the score predication of
vital signs readings as 1 (i.e., change in vital signs) or 0 (i.e.,
no change) but not for the final assessment of infants’ pain.
As discussed in [26], changes in vital signs are not specific
to the presence or absence of pain since they can be affected
by underlying illness, homeostatic changes, medications, and
other factors. Using vital signs readings to assess an infant’s
final state does not give the highest result, as we will see in
the next subsection.

4146



Fig. 5. ROC Curve for Body Movement Indicator

2) Unimodal Infant Pain Assessment: In the unimodal
assessment, each of the pain indicators is used individually to
predict the infant’s final state as no-pain (class 0), moderate
pain (class 1), or severe pain (class 2). For facial expression
indicator, the five strain features are used to train different
state of the art classifiers. To analyze the association between
changes in vital signs and pain, HRmean, RRmean, and
SpO2mean features were extracted and used to train random
forest trees. Classifiers of both pain indicators are evaluated
using LOSOXV evaluation method. The body movement’s
feature Totalmotion was also used to predict the infant’s final
state. The first three columns of Table V summarize the results
of assessing pain in infants using each of the pain indicators
individually.

As shown in Table V, facial expression achieved the highest
overall accuracy (88%) in predicating the infant’s final state
as no pain, moderate pain, or severe pain. This result supports
previous finding [27] that facial expression might be the most
specific and frequent indicator of pain.

3) Multimodal Infant Pain Assessment: We present a
decision-level fusion method that combines the scores of dif-
ferent behavioral pain indicators and physiological changes to
predict the final state as no pain (class 0), moderate pain (class
1), and severe pain (class 2). Particularly, we combined the
class labels (i.e., 0, 1, or 2) for each individual pain indicator
or modality together. Then, we employed the majority-voting
method in the combination to decide the final prediction.

In the majority-voting scheme, each pain indicator or modal-
ity contributes by one vote (i.e., class label) to the final
predication; and the major class in the combination is chosen
as the final assessment of pain. If the combination of different
indicators has a tie, we chose the class that has the highest
confidence score as the final assessment of pain. For example,
the final predication for a combination of two pain indicators
(facial expression FE and vital signs V S) is decided as
presented in Table VI. As illustrated in the table, if the class
of both indicators are the same, this class is chosen to be the
final assessment (bolded in the table). If the indicators’ labels
(i.e., class label) make a tie, the final assessment’s class is the

TABLE V
UNIMODAL AND MULTIMODAL PAIN ASSESSMENT

PERFORMANCE SUMMARY

Unimodal Multimoda
Facial Expr. X X X X
Body Move. X X X X
Vital Signs X X X X
Accuracy 88% 86% 82% 90% 86% 89% 95%

Recall 57% 55% 52% 86% 70% 58% 98%

Precision 58% 52% 54% 61% 64% 60% 71%

TABLE VI
VOTING PROCEDURE TO COMBINE PAIN INDICATORS

VS\FE 0 1 2
0 0 (no pain) tie tie

1 tie 1 (moderate pain) tie

2 tie tie 2 (severe pain)

class with the highest confidence score.

Using Dataset1 and Dataset2, four combinations of pain
indicators (i.e., modalities) were generated to predict the
infant’s final assessment of pain. These combination are: 1)
facial expression and body movement; 2) body movement and
vital signs; 3) facial expression and vital signs; and 4) facial
expression, body movement, and vital signs. The last four
columns of Table V present summary of performance for these
four combinations.

As can be seen from the table, combining both behavioral
and physiological pain indicators for assessment achieved
the higher overall accuracy (95%) with 98% recall and
71% precision. This result supports preceding evidence that
demonstrated the association between pain and several be-
havioral/physiological pain indicators and recommended the
use of both for an efficient and accurate pain assessment.
An important point to consider here is that care providers in
NICU use a multimodal approach to assess pain of infants.
Our automated approach provides a continuous assessment of
pain similar to the current practice.

IV. CONCLUSIONS AND FUTURE RESEARCH

The traditional assessment of infants’ pain depends on uti-
lizing subjective tools that fail to meet rigorous psychometric
standards. Since untreated pain in infants can cause long-
term impairments, it is crucial to develop a quantitative and
continuous system for assessment. In this paper, we present an
automated approach to assess infants’ pain. Specifically, we
present automated unimodal and multimodal approaches for
infants’ pain assessment. Combining different pain indicators
for assessment (i.e., multimodal) achieved the highest overall
accuracy, which is 95%. This result suggests the feasibility of
developing an automated and multimodal approach for pain
assessment in infants.

Several directions exist for future research.
One direction is to evaluate our method on similar datasets

and compare the results. As a part of this direction, we

4147



also want to evaluate our method on a larger dataset. We
are currently working on collecting several behavioral and
physiological data for approximately 300 infants during acute
and chronic painful procedures.

Another direction is to investigate a feature-level fusion
method for assessment of infants’ pain. We believe that this
direction is challenging and difficult to implement in practice
due to features incompatibility, curse of dimensionally, and
missing data handling.

Finally, we plan to include crying sounds as a behavioral
pain indicator and the near infrared spectroscopy (NIRS) data
as a physiological pain indicator along with the other pain
indicators for assessment. Recent studies [28], [29] found that
pain caused hemodynamic changes in specific cortical regions
of the brain in infants and claimed that measurements of the
brain activity provide important information about the infant’s
pain state. We also plan to incorporate contextual information
(e.g., age and presence of the mother) into the assessment
approach to refine the classification process.
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