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Abstract

This paper presents an external camera method for mea-
suring fingertip forces by imaging the fingernail and sur-
rounding skin. This method is an alternative to the pho-
toplethysmograph sensor originally developed by one of the
authors. A 3D model of the fingernail surface and skin is
obtained with a stereo camera and laser striping system.
Subsequent images from a single camera are registered to
the 3D model by adding fiducial markings to the fingernail.
Calibration results with a force sensor show that the mea-
surement range depends on the region of the fingernail and
skin. A Bayesian method is developed to predict fingertip
force given coloration changes. Preliminary accuracy results
for normal and shear force measurement are presented. In
comparison to the results using the photoplethysmograph
fingernail sensor, our results are more accurate and double
the range of forces that can be transduced, all the way up
to the saturation level.

CR Categories: H.5.2 [INFORMATION INTERFACES
AND PRESENTATION]: User Interfaces—Haptic I/O;

Keywords: fingertip force, fingernail, coloration, image
registration, Bayesian

1 Introduction

The use of coloration change in the fingernail to predict fin-
gertip force was originally proposed by Mascaro and Asada
[6]. The blood flowing under the fingernail is affected by
the pressure at the fingerpad, and the coloration change in
the fingernail provides a surprisingly good transduction of
fingerpad force [7]. Shear forces as well as normal forces can
be measured, although there is coupling between them [8].

To image the fingernail, Mascaro and Asada [6] devised a
photoplethysmograph sensor comprised of an array of 6 LEDs
to illuminate the fingernail and an array of 8 photodetectors
to measure the coloration. These arrays are embedded in an
epoxy substrate shaped like an artificial fingernail (Figure
1), which is individually fitted and attached to a subject’s
fingernail. Wires are routed out for interface with a com-
puter. Sensor response was linear up to 1 N normal force
and beyond 1 N there was a nonlinear leveling off [8]. With
a linear model, the sensor predicted normal force to within
1 N accuracy in the range of 2 N and shear force to within
0.5 N accuracy in the range of 3 N.

In current grasping studies, instrumented objects are typ-
ically created that incorporate miniature 6-axis force/torque
sensors at predefined grasp points [12]. The subject is not
free to grasp an object in different ways or to change grasp
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Figure 1: (A) The underside of the photoplethysmograph fingernail
sensor. (B) The sensor attached to the fingernail.

Figure 2: Contact conditions that influence coloration include normal
force fz , shear forces fx and fy , fingertip orientation φx (pitch) and
φy (roll), and finger joint angle J3.

points. The fingernail-based force sensing technique has the
great advantage that objects do not have to be instrumented
and everyday objects can be used. There is no constraint on
how a subject changes grasp points.

The need to fabricate sensors fitted to each fingernail is
currently a disadvantage. Other limitations are the sparse
sampling of the fingernail and the lack of imaging of the
surrounding skin, whose coloration change we have found to
transduce fingertip force well also. Besides normal and shear
forces, other factors that influence fingernail coloration in-
clude the contact orientation, the curvature of the contact,
and the DIP joint angle (Figure 2). They all combine to
affect the coloration pattern, but it is asking a lot of a fixed
sparse sampling of the fingernail image to separate the influ-
ences of these factors. We have also found that the fingernail
coloration saturates at lower force levels than the surround-
ing skin.

This paper presents an alternative approach: an external
camera system that provides a fuller imaging of the back of
the fingertip. The use of an external camera system presents
challenges of keeping the fingernail in view, the lighting en-
vironment, and registration. None of these challenges is an
issue with the photoplethysmograph sensor, since the sensor
is fixed to the back of the nail and the lighting environment is
controlled. Nevertheless, the high resolution of the fingernail
image and surrounding skin is an offsetting advantage pro-
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viding that these challenges can be met. Furthermore, the
external camera approach does not encumber a subject and
there is no need for sensor fabrication and individual fitting.
The existence of low-cost cameras and of image processing
methods readily performed on PCs makes the instrumenta-
tion costs of such an approach relatively low.

In this paper, we consider a fixed fingertip pressing against
a 6-axis force sensor and imaged by a camera system in a
controlled lighting environment. We do not yet consider is-
sues of finger tracking or of handling variable lighting en-
vironments. The reason is to explore the fundamental ef-
fect of fingertip force versus fingernail coloration, without
yet throwing in such complicating factors. We present re-
sults regarding the dependence of force range on the region
of the fingernail and surrounding skin. A Bayesian estima-
tion method is developed to predict fingerpad force from col-
oration changes. Preliminary results of force prediction ac-
curacy for normal and shear forces separately are presented.

2 Calibration Stage

Figure 3: (A) A Flea 2D high-resolution camera images a contact
plane mounted on a 6-axis JR3 force sensor and manual Cartesian
stage. (B) Dome light and a molded plastic arm supporter with
Velcro strips to provide arm fixation.

Figure 3 shows a calibration stage comprised of a 6-axis
JR3 force sensor mounted on a small manual Cartesian stage,
a Flea CCD video camera (Point Grey Research, Inc), and
a small light dome. A rubber-surface flat plane is mounted
on the JR3 force sensor to provide a contact surface; the
Cartesian table is adjusted to locate the contact plane be-
neath a subject’s fingertip. The subject’s arm is fixated by
a molded plastic arm support and Velco strips; the plastic
arm has 2 DOFs for position adjustment. A subject sits in a
chair adjustable with 4 DOF for positioning relative to the
experimental stage.

The small light dome provides a controled lighting envi-
roment so that the images taken at different times are com-
parable. A reflective hemisphere was created from molded
pastic; a hole at the top permits visual access by the Flea
camera. LEDs placed along the perimeter reflect off the
dome to create uniform lighting on the fingernail surface
and to avoid specular reflection.

Images are captured from the Flea camera at 30 fps, syn-
chronously with recorded forces from the JR3 force sensor.
In combination with the lens, the Flea camera measures an
image that is about 8 cm along the optical axis and is about
4x3 cm in crossection. The green channel from the cam-
era’s RGB color space has been found to produce a larger
coloration response and better linearity with force than the
other color channels, and is used subsequently.

Figure 4: The display feedback.

A visual display (Fig. 4) guides subjects for calibration.
Two of the three dimensions of force read from the JR3 force
sensor are represented by position, while the third dimension
is represented by the radius of a circle. Colors are used in
the actual display. There is a blue circle with a blue cross in
the center to represent the actual force applied, as measured
by the JR3 force sensor beneath the finger. The x position
of the cross represents lateral shear force Fx, the y position
represents longitudinal shear force Fy, and the size of the
circle represents the normal force Fz. The x position of
a white-filled red-edge sphere represents the desired shear
force Fx and the y position represents desired shear force
Fy. The circle size of the red circle, whose center follows the
cross, represents the desired normal force Fz.

3 Image Registration and Surface Modeling

Fingernail locations will vary depending on the grasp and
on the relative locations of the camera. As a particular fin-
gernail is imaged, it will be necessary to correspond points
in the image to a reference image so that calibration re-
sults can be applied. The reference image will need to be
a 3D surface model fitted to the fingernail, because the fin-
gernails and surrounding skin are curved surfaces and the
shapes of individual fingernails vary. After comparing dif-
ferent surface representations including polygonal meshes,
B-spline surfaces, and quadric surfaces, we chose a dense
triangle mesh model since they are easiest to adapt to fin-
gernail geometry.

3D points that form the vertices of triangular meshes are
obtained with a Bumblebee BB-HICOL-60 (Point Grey Re-
search, Inc.) stereo camera (Figure 5(B)). Since the finger-
nail is smooth and relatively featureless, it is difficult for
the stereo camera system to find corresponding points in
the two images. A common computer vision method for
such situations is structured light onto the surface, which
is easy for stereo vision to match. We employ a Steminc
SMM96355SQR laser module to create a 4-by-4 grid pat-
tern. A 3D data cloud obtained from the stereo camera is
shown in Figure 6(B).

We do not employ the Bumblebee stereo camera for the
coloration measurements because its resolution is too low.
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(A)

Figure 5: (A-B) The Bumblebee stereo camera. (C)The grid pattern
that is projected onto the fingernail by the laser module.

However, its output is adequate for determining a 3D mesh
model. To map the high-resolution Flea 2D images to a 3D
model, we employ a well-known technique from computer
vision [2] of adding fiducial marks to the fingernail and sur-
rounding skin with a black marker (Figure 6(A)). It is nec-
essary that the relative locations of the fiducial markings in
the 3D model be known; this knowledge is obtained using
the stereo camera. The fiducial marks are then automati-
cally detected in the 2D image from the Flea camera [13]
and used to compute the extrinsic parameter matrix [R t],
where R and t are the rotation and displacement from the
2D image to the coordinates of the 3D model (Figure 7).

The homogeneous coordinates of a point i in the 2D image
pi and in the 3D model Pi are

pi = [ui vi 1]T Pi = [X Y Z 1]T

where the 2D camera coordinates are (ui, vi). Let K be the
intrinsic parameter matrix for the camera, and define the
3x4 transformation

M = K [R t] = [m1 m2 m3]
T

The transform relation between the two coordinates is pi =
M Pi. Hence

m
T
1 Pi − (mT

3 Pi)ui = 0 (1)

m
T
2 Pi − (mT

3 Pi)vi = 0 (2)

With 6 fiducial marks, the parameters in M can be cal-
ibrated with linear least squares. A registration result is
shown in Figure 6(C).

4 Coloration Response

Figure 8 shows the coloration response hi of one typical point
i in the fingernail to a normal force fi on the finger pad. The
response curve shows that the coloration starts to change
when the force reaches a certain level fa and then stops
changing at force fb because of saturation. Point i can only
transduce the force in the measurement range [fa, fb].

To find the measurement range, the gradient curve of the
response curve is calculated.

1. Locally weighted linear regression is used to fit the
response curve [9]. The weighting function is wk =

(A)

(B)

(C)

Figure 6: (A) Fingernail with fiducial marks. (B) 3D point cloud
from the stereo camera. (C) Triangular 3D mesh with color mapped
from the 2D image.

exp(−D(fk, fi)
2/K2

w), where i is the index of the query
point, and k is the index of points around i. It gives
larger weight to the points close to the query point
and small weights to far points. This curve fitting em-
phasizes local information, which can pick up turning
points. A typical result is shown in Figure 8.

2. Local gradients on the fitted curve are calculated by
differentials.

3. A threshold gth is set. The crossing points where the
gradient curve crosses the threshold are found. The
measurement range [fa, fb] is the segment that starts
from a rising crossing point and stops at a falling cross-
ing point, as shown in Figure 9.

Different points in the fingernail and surrounding skin
have different measurement ranges. Some of them start from
0 N force, and some of them start from a relatively high force
such as 4N. Some of them saturate at a very high force such
as 10N, and some of them saturate at a lower force such as
3N. Some have two or more measurement ranges as show in
Figure 10. Currently, the largest measurement range of the
point is defined as the measurement range of that point.

Figure 11 shows the start point color map (left column)
and the saturation point color map (right column) of one
subject. The row numbers 1 to 7 represent the force levels
[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6) and [6, 10) re-
spectively. The dark points in each figure are the regions of
the fingernail and surrounding skin with the associated force
levels.

• Most points in the front of the fingernail start to re-
spond at a force level of 2–3 N and saturate at 5–6 N.
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Figure 7: Perspective camera geometry model. A fiducial point is
related between the 2D Flea camera image and the 3D surface model
that defines the world coordinates.

Figure 8: The coloration response data of a point in the fingernail
with force from 0–10 N. A fitting curve is calculated with locally
weighted linear regression.

Figure 9: The gradients and the crossing points (circles) when the
threshold gth = 0.3.

Figure 10: Two measurement ranges for this particular point on the
fingernail.

• Most areas in the middle of fingernail start to respond
at 0–1 N. Some of those areas saturate at 1–2 N, while
others saturate at 2–3 N.

• Some areas on the skin surrounding the fingernail start
to respond at 3–4 N and some start to respond at 4–5
N. They all saturate at force larger than 6 N.

There is no point on the fingernail or the surrounding skin
which has a measurement range to cover 0–10 N. Some areas
have their measurement range at low level forces, other areas
have measurement ranges at high level forces. By combining
all the area together, the fingernail coloration can possibly
transduce forces from 0 to 10 N for this subject.

5 Linear Response Regions

Our research has identified that certain areas of the finger-
nail show a strong linear response of coloration to fingertip
force, others do not. Not just the fingernail areas show this
effect, certain areas of the surrounding skin show a strong
linear response as well. The location of the good areas de-
pends on the contact conditions. Figure 12 shows the areas
that respond well to the sideways shear fx, the forward shear
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Figure 11: The start map (left column) and the saturation map (right
column).

fy, and the normal force fz. Some areas respond well to all
components of force, other areas are unique to a force com-
ponent particularly for sideways shear fx, where skin areas
are particularly involved.

(A) (B)

(C)

Figure 12: Regions of the finger with good linear response to (A)
sideways shear fx, (B) forward shear fy , and (C) normal force fz .

The determination of which regions of the fingernail and
surrounding skin respond well is done by a linear correlation
analysis [1]. A linear model of intensity hi of a mesh element
i versus a force component fi was fit:

hi = αfi + β; (3)

where a and b are the linear fitting parameters. The corre-
lation coefficient was computed for n readings to determine
how linear each mesh element response is with force.

R =
1

n

∑n

i=1
(fi − f̄)(hi − h̄)√

1

n

∑n

i=1
(fi − f̄)2 1

n

∑n

i=1
(hi − h̄)2

(4)

f̄ and h̄ are the averages of the force and intensity readings
respectively. Mesh elements whose correlation magnitudes
are above 0.6 are considered to be good. Other mesh ele-
ments are discarded in order to reduce the dimensionality of
the calibration model and to improve the calibration accu-
racy.

6 Bayesian Prediction Model

A good prediction model should be able to include all the
statistical information. For this particular application, the
model should include all the mesh elements with their mea-
surement ranges. A least squares model cannot include the
measurement ranges. Also, the number of input variables
(the mesh elements) is too big for a traditional least squares
model. A principle component analysis has to be done to re-
duce the number of variables, which throws out information.
A least squares model would treat color as the input variable
and force as the output variable. However, the causality is in
the other direction: force causes color changes. A Bayesian
model [11] captures this notion through the posterior p(f |h),
which can easily include the measurement range infomation.

Lump the m coloration readings from the good regions
into a vector h = [h1 . . . hm]T . Bayes’ rule is

p(f |h) =
p(h|f)p(f)

p(h)
(5)
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where p(f) is the probability of a force component, p(h) is
the probability of the coloration observation, p(h|f) is the
conditional probability of a coloration observation given a
force, and p(f |h) is the conditional probability of a force
given a coloration observation. A key facilitator is that resid-
uals of the coloration observations h given a force can be
modeled using a normal distribution [11], which was verified
using Q-Q plot [3].

p(h|f) =
1

K
exp−

1

2
(h − h)T

Σ
−1(h − h) (6)

where h is the mean of h, and Σ is the variance matrix of
h, which can be estimated from the experimental samples
of h. K is a constant which later cancels out. We assume
the distribution of forces on the finger pad is uniform in the
measurement range [fa, fb]:

p(f) =

{ 1

fb − fa

fa ≤ f ≤ fb

0 otherwise
(7)

The conditional probability of a force given a coloration ob-
servation can be written as

p(f |h) =
p(h|f)p(f)∫ fb

fa

p(h|f)p(f)df

=
exp− 1

2
(h − h)T Σ−1(h − h)

(fb − fa)K
∫ fb

fa

p(h|f)p(f)df
(8)

≡
G(f,h)

M(h)
(9)

M(h) is a constant, while G(f,h) is a function of f since

the means h depend on f . hi is modeled as a linear function
of f as in (3), whose coefficients are estimated by linear
regression.

A loss function is defined as

L(f, f̂) = (f − f̂)2 (10)

The optimal Bayes estimation is

f̂Bayes =

∫ fb

fa

fp(f |h)df /

∫ fb

fa

p(f |h)df

=

∫ fb

fa

f G(f,h)df /

∫ fb

fa

G(f,h)df (11)

f̂Bayes can be estimated by numerical integration with a
coloration observation h.

7 Calibration and Verification

To verify the system, experiments were carried out with 7
subjects varying in age, size, sex and race. Subjects used
their index fingers to press on the rubber plate mounted on
the JR3 force sensor while the camera monitored the col-
oration change of the index finger. Subjects were asked to

produce normal forces and shear forces with display feed-
back. For each direction of force, 3 sets of data were taken.
The first two sets were used for calibration and the third set
was used for verification.

Figure 13 shows the verification examples of dynamic force
applications for two subjects. Each subject is rhythmically
exerting force on the calibration stage. For each subject,
there are 3 plots representing 3 recordings of different tasks:
exerting primarily a normal force fz, a shear force fx, or
a shear force fy. The Bayesian estimators are trained on
a different set of recordings. The predictions are truncated
above the 6 N force magnitude because of saturation of the
coloration effect, even though the actual force production
goes higher. For example, subject (A) produced a maximum
of 25 N, which is why there is the big gap between cycles
of the periodic force response. A total of 7 subjects were
tested, and these plots are representative examples.

Figure 13: Force predictions for 2 subjects (A) and (B). For each
subject there are 3 tasks: exerting primarily a normal force fz , a
shear force fx, and a shear force fy . The dashed lines represent the
measured force components, the solid lines represent the estimated
force component using the Bayesian predictor.

The accuracies of predicting the different force compo-
nents vary between subjects and force directions. For the
z direction, 5 subjects have RMS error below 0.4, which is
6.7% of the measuring range, while the rest have RMS error
below 0.8, which is 13% of the measuring range. For subject
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(A) the normal force fz is predicted fairly accurately (RMS
error is 0.34), whereas for subject (B) the sideways shear fx

is predicted fairly accurately (RMS error is 0.278).

A statement of accuracy is complicated by delays in the
coloration effect for this dynamic task. For example, the
shapes of the actual versus predicted shear force profiles fy

are fairly similar for subject (A), but they are displaced in
time. If one looked at a particular instant in time, there
might appear to be a large error between actual force and
predicted force. Another complicating factor is that the
Bayesian predictor was trained on the fast-ramp data, and
time misalignment was not taken into account and no doubt
has degraded the estimates. In comparison to the results of
[8] using the photoplethysmograph fingernail sensor, our re-
sults are more accurate and double the range of forces that
can be transduced, all the way up to the saturation level.

8 Discussion

The external camera system proposed in this paper shows
a rather complex picture of coloration change with finger-
tip force. Depending on the region of the fingernail and
surrounding skin, the usable force range varies. A typical
example from a subject shows that the middle region of the
fingernail has a low force range (0–2 N), the front region has
an intermediate force range (2–6 N), and the surrounding
skin has a high force range (3 to greater than 6 N). The
saturation point varies with subject: sometimes less than 6
N, sometimes more. To predict the fingertip force response
over the entire range from 0 N to saturation, readings from
all fingernail and skin regions need to be combined.

The usable force range from our imaging system corre-
sponds well to typical fingertip forces during contact. [10]
reported that forces between 0 to 2 N are the most relevant
for grasping and typing. [5] found that a human is capable
of controlling a constant finger force in the range of 2 to 6
N with average error of 6% with visual feedback and natu-
ral haptic sense. Also, [6] found that the force that a human
subject can comfortably apply for an extended time is about
3 N.

In view of these results, the limited sampling explains
some of the limitations in force prediction of the photo-
plethysmograph sensor [6]. A few points on the nail were
imaged, typically in the middle regions. This explains why
the response appeared to saturate at 2 N. Also, the greater
ability to select good response regions may partly explain
the higher force prediction accuracies with the method of
this paper. The Bayesian estimator may also yield greater
accuracies than the least squares estimator in [6].

In this paper, the green color channel was used for col-
oration observation, since its response range and linearity is
better than the blue and red channels. There are possibly
other channels in other color spaces better than the green
channel; one alternative, for example, is the HSI (hue satu-
ration intensity) color space. Our future work will compare
different coloration spaces.

The time course of the coloration affects the prediction
accuracy. In the future, we will calibrate the time constant
for each measurement point in the fingernail. The prediction
model will only use the points with fast dynamic response in
order to lessen the time course effect. The extent to which
the different factors affecting coloration response (normal
force, shear force, finger joint angle, etc.) can be separately
estimated is also a subject of ongoing investigation.
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