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Outline

* Learn grasping from human
— Motion
— Force
— Interaction
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Motivation

Develop a tool to extract and represent both
hand synergy and grasp motion dynamics
features

Compare different grasp motions

Find nature clustering of similar grasp motions

In terms of grasp motion trajectory

Similar grasp motion may indicate similar control

Motion features and clustering may provide
insight on human grasping strategies and be
useful for robotic grasping control



Grasp Motion Data Collection
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Initial Data

Five participants

Nine different objects with 15 Cutkosky types
of grasp

Five trials each type
Measure 14 joints -- 14-DOF data

14 dimensional time series data -- 60 Hz
sampling



“alue of the curve

“Yalue of the curve

Motion Alighment

Raw data
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Represent Motion Data with PCA+fPCA

e Two fPCA scores for each of the three PCA
scores

* A continuous grasp motion is represented
with six variables

 With two fPCs for each of the three PCs

* A motion curve is represented as a point in
the six dimensional space



Yalue of fPC curve
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Clustering grasping motion in score space
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Data Driven Grasping Motion
Taxonomy

e Stable across all subjects
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Compare with Cutkosky Taxonomy
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Evaluation
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Use three of the five trials
each grasp type for training

10-fold cross validation with Leave one of the 15
all grasp types Cutkosky grasp types
for testing
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Frontal View

Measure Fingertip Force

Side View
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Problems

* Artifacts
— predefined grasping points
— fake surfaces
— simple geometry

* Expensive

* ldeal grasping studies
— everydayobjects
— contact points vary
— distance, slope, and curvature vary
— materialtype, and friction



Related Work

Mascaro & Asada at MIT

Infrared LEDs & Photodetectors

Detect blood amount in arterioles

Mounted on fingernails with transparent

glue F,

Advantages:
e |ocated on the nail
e everyday objects
e Natural contact surface
New problems:
e one sensor fits one fingernail
e need individual calibration
e 6 photo-detectors --Limited sampling

e sample areas are pre-defined and not
adjustable

e small measurement range
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Computer Vision Approach

e Camera images the full back
of the fingertip

COMPUTER e Natural lighting
e Computervision techniques
VISION CARD to interpret the color to
force
AN

—
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Automatic Calibration

Finger restraint
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Force Trajectories
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2D Elastic Registration

Images taken from differentsubjects

Segment the nails
— Canny edge filter
— CubicB-spline

Elastically deform them to the same .
Segmentation
shape ;

— Boundary->boundary o

— Elasticsheets

— Keeps relative location of the color

pattern L3

20 a0

Standard shape
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Deformation Mapping
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Start map
Green Channel

[0, 1) Dark Red
[1, 2) Red

[2, 3) Yellow

[3, 4) Green

[4, 5) Cyan

[5, 6) Blue

[6, 10) Magenta

r)ink:

Points in the middle —startat O—1 N,
saturateat 2-3 N.

Points in the front—startat 2-3 N,
saturateat 5-6 N.

Points on the skin — startat 4-5 N,
saturateat 6-10N

Surroundingskin transduces large force

Combiningall areas together gives big
measurementrange
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Coloration ResponselAnaIysis
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The color intensity changes from bright to dark with an increasing
force
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Modeling — Bayesian Prediction

Force -> Color

Color -> Force -- Inverse problem -> Bayesian inference model
Combine all linear segments of the points together

Optimal Bayesian Estimation — reduced to Weighted Least Squares

f = (BX'B)"'B'Y"!(h—a)

h - measured colors
3 - covariance matrix of colors
B and a - regression parameters estimated with calibration
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Verification Result
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RMS errors (N) of estimation for force components for seven
subjects
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Learning and Execution Results of
Motion and Force
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Grasping

* Grasping force feature on fingertip changes
with not only objects but also the interaction
in tasks

* Feature task wrench (force and torque
interaction on the tool) space



Task 1: cutting

Use a Knife
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Measure a TWS Considering Task
Disturbance Distribution

e Human demonstration a
manipulation using a haptic
device in virtual reality

* The external task-related

disturbance was captured
during the task execution

 The task disturbance data
was down-sampled to build
a non-parametric statistical
distribution




Grasp Planning

* Uses optimization mathematics to search for
the optimal contact positions on an object

— Cost function: grasp quality measures

* A typical grasp quality measure

— Considers the ability of a grasp to resist the
disturbance in a task



Quality Measure Base on Task
Disturbance Distribution

The quality measure k., is no longer a reasonable constraint to the noisy TWS

A new measure Q: measures the proportion TWS covers the scaled GWS by a
factor of k
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Results

Example 2: kitchen knife.

e Task 1: cutting

K=8.04

(a) (b)

e Task 2: butter
spreading

K=3.25
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Success Rate of Real Execution

Our approach

Force-closure approach

Table 1: Comparison of the success rate between
the prosposed approach using task disturbance with
non-task-oriented approach.

Task Success Rate | Success Rate
of Task Dis- | of non-task
turbance oriented Grasp
Based Grasp | Planning
Planning

Task 1 | 60% 40%

Task 2 | 80% 70%

Task 3 | 70% 20%

Overall | 70% 43.3%
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