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Motivation
• Develop	a	tool	to	extract	and	represent	both	
hand	synergy	and	grasp	motion	dynamics	
features

• Compare	different	grasp	motions	
• Find	nature	clustering	of	similar	grasp	motions
• In	terms	of	grasp	motion	trajectory
• Similar	grasp	motion	may	indicate	similar	control
• Motion	features	and	clustering	may	provide	
insight	on	human	grasping	strategies	and	be	
useful	for	robotic	grasping	control
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Grasp	Motion	Data	Collection

5DT	
Dataglove
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Initial	Data

• Five	participants
• Nine	different	objects	with	15	Cutkosky types	
of	grasp

• Five	trials	each	type
• Measure	14	joints	-- 14-DOF	data
• 14	dimensional	time	series	data	-- 60	Hz	
sampling
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Motion	Alignment

Applied	dynamic	time	warping 7



Represent	Motion	Data	with	PCA+fPCA

• Two	fPCA scores	for	each	of	the	three	PCA	
scores

• A	continuous	grasp	motion	is	represented	
with	six	variables

• With	two	fPCs for	each	of	the	three	PCs
• A	motion	curve	is	represented	as	a	point	in	
the	six	dimensional	space
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FPCA
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Data	Driven	Grasping	Motion	
Taxonomy

• Stable	across	all	subjects
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Compare	with	Cutkosky Taxonomy
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Evaluation

10-fold	cross	validation	with
all	grasp	types	

Use	three	of	the	five	trials	
each	grasp	type	for	training

13

Leave	one	of	the	15	
Cutkosky grasp	types	
for	testing

97% 99%89%
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Measure	Fingertip	Force
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Problems
• Artifacts

– predefined	grasping	points
– fake	surfaces
– simple	geometry

• Expensive
• Ideal	grasping	studies

– everyday	objects
– contact	points	vary
– distance,	slope,	and	curvature	vary
– material	type,	and	friction
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Related	Work
• Mascaro	&	Asada	at	MIT
• Infrared	LEDs	&	Photodetectors
• Detect	blood	amount	in	arterioles
• Mounted	on	fingernails	with	transparent	

glue
• Advantages:	

• located	on	the	nail
• everyday	objects
• Natural	contact	surface

• New	problems:
• one	sensor	fits	one	fingernail
• need	individual	calibration
• 6	photo-detectors	--Limited	sampling
• sample	areas	are	pre-defined	and	not	

adjustable
• small	measurement	range
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Computer	Vision	Approach

• Camera	images	the	full	back	
of	the	fingertip

• Natural	lighting
• Computer	vision	techniques	

to	interpret	the	color	to	
force
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Calibration

2D – 2D2D – 3D

Registration

Color response model

Force estimation
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Automatic	Calibration
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Force	Trajectories

h

d

Cartesian	coordinate	system

Archimedean	spiral

Fermat	spiral
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2D	Elastic	Registration

• Images	taken	from	different	subjects
• Segment	the	nails

– Canny	edge	filter
– Cubic	B-spline

• Elastically	deform	them	to	the	same	
shape
– Boundary	->	boundary
– Elastic	sheets
– Keeps	relative	location	of	the	color	

pattern

Segmentation

Standard shape
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Deformation Mapping
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• Points	in	the	middle	– start	at	0–1	N,	
saturate	at	2-3	N.	

• Points	in	the	front	– start	at	2-3	N,	
saturate	at	5-6	N.	

• Points	on	the	skin	– start	at	4-5	N,	
saturate	at	6-10N

• Surrounding	skin	transduces	large	force
• Combining	all	areas	together	gives	big	

measurement	range
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Coloration	Response	Analysis

The color intensity changes from bright to dark with an increasing 
force

Pressure vs. volume of human finger arteries
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Modeling	– Bayesian	Prediction
• Force	->	Color	
• Color	->	Force		-- Inverse	problem	->	Bayesian	inference	model
• Combine	all	linear	segments	of	the	points	together
• Optimal	Bayesian	Estimation	– reduced	to	Weighted	Least	Squares

h – measured colors
∑ - covariance matrix of colors
B and a – regression parameters estimated with calibration

Individually trained
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Verification	Result

RMS errors (N) of estimation for force components for seven
subjects
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Learning and Execution Results of
Motion and Force

The demonstrated dataset The GMM model result

Generated trajectory with GMR Execution results by the robot30
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Grasping

• Grasping	force	feature	on	fingertip	changes	
with	not	only	objects	but	also	the	interaction	
in	tasks

• Feature	task	wrench	(force	and	torque	
interaction	on	the	tool)	space
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Use	a	Knife

Task	1:	cutting
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Task	2:	butter	spreading



Measure	a	TWS	Considering	Task	
Disturbance	Distribution

• Human	demonstration	a	
manipulation	using	a	haptic	
device	in	virtual	reality

• The	external	task-related	
disturbance	was	captured	
during	the	task	execution

• The	task	disturbance	data	
was	down-sampled	to	build	
a	non-parametric	statistical	
distribution
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6-axis Force Sensor



Grasp	Planning

• Uses	optimization	mathematics	to	search	for	
the	optimal	contact	positions	on	an	object
– Cost	function:	grasp	quality	measures

• A	typical	grasp	quality	measure
– Considers	the	ability	of	a	grasp	to	resist	the	
disturbance	in	a	task
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Quality	Measure	Base	on	Task	
Disturbance	Distribution

• The	quality	measure	km is	no	longer	a	reasonable	constraint	to	the	noisy	TWS
• A	new	measure	Q:	measures	the	proportion	 TWS	covers	the	scaled	GWS	by	a	

factor	of	k
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Q1(2.4)=0.91 Q2(2.4)=0.76

Q1(3.3)=0.92 Q2(3.3)=0.75

Q1(5.2)=0.96 Q2(2.4)=0.93

�1 = 0.09 �2 = 0.14 

�1 = 0.1  �2 = 0.15 

�1 = 0.11 �2 = 0.13 

�1 = 0.11 �2 = 0.13 



Results

• Task	1:	cutting
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• Task	2:	butter	
spreading

K=8.04

K=3.25

Example	2:	kitchen	knife.	



Success	Rate	of	Real	Execution

39
Our	approach Force-closure	approach
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