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a b s t r a c t

This paper presents a novel object–object affordance learning approach that enables intelligent robots to
learn the interactive functionalities of objects from human demonstrations in everyday environments.
Instead of considering a single object, we model the interactive motions between paired objects in a
human–object–objectway. The innate interaction-affordance knowledge of the paired objects are learned
from a labeled training dataset that contains a set of relativemotions of the paired objects, human actions,
and object labels. The learned knowledge is represented with a Bayesian Network, and the network can
be used to improve the recognition reliability of both objects and human actions and to generate proper
manipulation motion for a robot if a pair of objects is recognized. This paper also presents an image-
based visual servoing approach that uses the learned motion features of the affordance in interaction as
the control goals to control a robot to perform manipulation tasks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Object categorization and human action recognition are impor-
tant capabilities for an intelligent robot. Traditionally, these two
problems are treated separately. However, manipulation skills and
object affordance are highly related for humans. Therefore, seek-
ing an approach that can connect and model the motion and fea-
tures of an object in the same frame is considered a new frontier
in robotics. With the boom in learning from demonstration tech-
niques in robotics [1–3], more and more researchers are trying to
model object features, object affordance, and human action at the
same time.Most of thework builds the relationship between single
object features and human action or object affordance [4–6].

In daily life, when we are performing tasks, we pay most of our
attention to object states or object interactions. For example, when
we are writing on paper with a pen, we focus our attention on the
pen point, which is the interaction part between the pen and the
paper. Moreover, object interaction can directly reveal an object’s
functions. For instance, when we put a book into a schoolbag,
the putting motion tells us that the schoolbag is a container for
books. There are endless interactive examples with paired objects
in our daily lives. Fig. 1 shows several objects on a table that
have an inter-object relationship: a CD and a CD case, a pen and
a piece of paper, a spoon and a cup, and a cup and a teapot. In this
paper, we attempt to capitalize on the strong relationship between
paired objects and interactivemotion by building an object relation
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model and associating it with a human action model in the
human–object–object way to characterize inter-object affordance.

The interactivemotions of these objects are better defined if we
know the interactive pairs. For example, in daily life, we move a
teapot in many different ways, such as putting it on a table, storing
it on a shelf, and washing it. However, if we have a teapot and a
teacup in a scene, water-pouring motion is more likely to occur.
Likewise, if we recognize a pouring motion and a teacup, it is very
likely that the object associated with the pouring motion is the
teapot.We define the interactivemotion between paired objects as
the object–object-interaction affordance that is connected to both
objects. Object–object-interaction affordance is not only useful
for object and motion recognition, but also important for robotic
learning, as robots can learn object–object-interaction affordance
as a manipulation skill that is intrinsic to the paired objects.

Object affordance cognition is one ofmany core capabilities that
a robot needs to gain before it can intelligently perform tasks in the
real world. However, this challenging problem has been explored
only recently in limited works. Many of the current works model
object affordance with interaction between a single object and
human action and then use themutual relationship to improve the
recognition of each other. Gupta and Davis [4] recently achieved
inspiring success in using single object–action to improve the
recognition rate of both the object and human motion. Jiang et al.
[7] encoded human preferences about object placements along
with the geometric relationship between objects and their placing
environments. Kjellstrom et al. [5] used conditional random field
(CRF) and factorial conditional random field (FCRF) to model the
object type and human action relationship and estimated the
3D hand pose to represent human action, which includes open,
hammer, and pour actions. Yao and Li [8] modeled the mutual
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Fig. 1. Several objects on a table have inter-object relationships.

context information between human poses and objects in still
images using a structure-learning method to model the human
and object interaction and achieved a state-of-the-art result in
object and human pose detection in static images. Most recently,
Gall et al. [6] recovered human action from depth images and
used it to represent object function and affordance. In their work,
objects were classified according to the involved human action in
an unsupervised way based on high-level features.

Some recent works have tried to infer object affordance from
object low-level features or 3D shapes. Stark et al. [9] obtained
object affordance cues from human hand and object interaction
in training images and then detected an object and determined
its functions according to its affordance cue features. Grabner
et al. [10] proposed a novel way to determine object affordance
using computer graphical simulation. With 3D object shapes, their
system ‘‘imagines’’ an actor performing actions on objects in a
scene to determine the objects’ affordances. In [10], first the 3D ge-
ometry of a single indoor image was recovered, and then the affor-
dances of the objects were inferred from the joint space of human
poses and scene geometry by modeling the physical interaction.

In the robotics community, several works obtained and used
object–action relation without considering many low-level object
features. In [11], concrete object recognition was not considered,
and objects were categorized solely according to object interaction
sequences. Objects were segmented out from a number of video
sequences, and an undirected semantic graph was used to repre-
sent the space interaction relationship between objects. With a se-
quence of graphs, their workwas able to represent object temporal
and spatial interactions in an event.With the semantic graphs, they
constructed an event table and a similarity matrix. The similarity
between two sequences of object interaction events could be ob-
tained according to the similarity matrix. The objects could further
be categorized according to their roles in the interactions, and the
obtained semantic graphsmight be used to represent robotic tasks.

In summary, most current works focus on object–action
interaction or low-level object affordance features. Few investigate
the affordance relationship between objects. This paper presents a
way tomodel inter-object affordance and then use the inter-object
affordance relationship to improve object and action recognition.

Studies in neuroscience and cognitive science on objects’ affor-
dance [12] indicate that the mirror neurons in human brains con-
gregate visual andmotor responses [13–15]. Mirror neurons in the
F5 sector of the macaque ventral premotor cortex fire both during
observation of interacting with an object and during action exe-
cution, but do not discharge in response to simply observing an
object [16,17]. Recently, Yoon et al. [18] studied the affordances
associated to pairs of objects positioned for action and found an
interesting so-called ‘‘paired object affordance effect’’. The effect
was that the response time by right-handed participants is faster if
the two objects were used together when the active object (sup-
posed to be manipulated) was to the right of the other object.

Borghi et al. [19] further studied the functional relationship be-
tween paired objects and compared it with the spatial relationship
and found that both the position and functional context are im-
portant and related to the motion; however, the motor action re-
sponse is faster andmore accuratewith the functional context than
the spatial context. The study results in neuroscience and cogni-
tive science indicate that there are strong connections between the
observation and the motion, and functional relationships between
objects are directly associated with the motor actions. A compre-
hensive review of models of affordances and the canonical mirror
neuron system can be found in [20].

Inspired by the studies above, we propose to capitalize on the
connection between the observation of functional-related objects
and active functional motion actions to address the skill-learning
problem in robotics. In this paper, we simplify the functional-
related objects with piece-wise functional-related paired objects
and model the inter-object manipulation motions as the inter-
object affordance and associate it with paired-object recognition.
The goal is to allow robots to learn inter-object affordancemotions
from humans and then trigger the robot to generate the correct
manipulation motion when observing the paired objects.

To model the functional relationship of the paired objects
and their relationship with the manipulation motion, this paper
presents a graphicalmodel that connects the paired objects and the
manipulation motions. The graphical model intuitively represents
the functional connectivity of the objects, such as a teapot and a
cup or a book and a schoolbag, and extends that connectivity to
manipulation motions. A Bayesian Network is employed to model
these relationships, inwhich the paired objects, the interact action,
and the consequence of the object interaction are included as a
node in the graphical model.

In addition, we developed a method to recognize the paired
objects and human motion by analyzing the interactive motion
and the statistical knowledge learned from training data. We also
constructed amethod to leverage object recognition accuracy from
videos with the recognition of human interactions, and vice versa.
With hand motion trajectory and statistical knowledge learned
from training data, the detection accuracy of the interactive objects
is significantly improved. With the recognition of the objects, the
interactive motions carried out by humans are recognized with
much higher accuracy as well.

The interactive motions associated with the paired objects can
be learned as the affordance in interaction with statistical models
such as Gaussian mixture models. The learned motion can then be
directly used to control a robot to perform the propermanipulation
motionwhen the robot sees the paired objects. This paper presents
an image-based visual servoing approach that uses the learned
motion features in the interaction affordance as the control goals
to control the robot to perform the manipulation task instead of
manually programming the motion.

We recruited 6 subjects, evaluated our approach with 5 pairs of
objects in experiments, and recorded the interactive motion in 50
video sequences.

2. Model human–object–object-interaction affordance

Fig. 2 illustrates the workflow of our framework. We first ob-
tained the initial likelihood of the objects’ manipulation and reac-
tion. The object initial likelihoods were estimated with a sliding
window object detector, which is based on the Histogram of Ori-
ented Gradients (HoG). We estimated the initial likelihood of hu-
man action based on the feature of human handmotion trajectory.
The human hand was tracked in the whole process, and the hand
motion was segmented according to the velocity changing. With
motion segmentation and possible object locations, the interactive
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Fig. 2. Framework workflow.

object pairs were detected in the step of key reach motion detec-
tion. The start time of themanipulationwas estimated based on the
object pair locations and hand motion trajectory. Then, the initial
belief of the manipulation was computed.

Object interaction usually leads to a state change of the
associated objects. For example, if a CD is put into a CD case, the
color of the CD case probably will change. The likelihood of object
reaction was estimated by comparing with the training datasets.
Finally, the belief in each node was updated with the inference
algorithm for Bayesian Networks.

2.1. Bayesian network for human–object–object affordance

A Bayesian Network is a powerful inference tool for decision
making in the observation of several or many interrelated factors.
The belief for each node can be updated with messages from other
evidence nodes. In our Bayesian Network (as illustrated in Fig. 3),
the two interactive objects are represented asO1 andO2.M denotes
hand manipulation motion, and OR is the object reaction, which
denotes the object state change after the interaction. The inter-
object affordance, which is also the human action or manipulation
M , is determined by the two interacting objects (O1 and O2), and
they are the parents of node M . Similarly, the object reaction is
the consequence of the two objects and the manipulation, so it
becomes the child of the three nodes in the graph. The remaining
nodes are evidence, e = {eO1 , eO2 , eM , eOR}, and they represent the
evidence for O1, O2, M , and OR, respectively. Using the Bayesian
rule and conditional independence relations, the joint probability
distribution can be represented with Eq. (1). After we obtain the
evidence, we can estimate the belief of each node with loopy
believe propagation algorithms. Each item in the right side of
Eq. (1) is discussed in the following sections.

P(O1,O2,M,OR|e) ∝ P(O1|eO1)P(O2|eO2)

P(M|O1,O2)P(M|eM)

P(OR|O1,O2,M)P(OR|eOR) (1)

Our Bayesian model can be scaled up by increasing the number
of variables for object and action in eachnodewithout changing the
graphical model structure. Alternatively, we can combine multiple
Bayesian networks to form a large-scale graphical model if there
are inter-connections between different pairs of objects.

2.2. Object detection

To estimate the initial likelihood of the objects, we used an
approach similar to [21]. The detector works in the sliding window
manner, and we used a variant of the HoG feature from [22] to
represent the object local features. At each pixel, the color channel

Fig. 3. Graphical model for motion and object interaction. O1 and O2 represent the
two interacting objects,M denotes hand manipulation motion, and OR is the object
reaction.

with the largest gradient magnitude was used to represent the
gradient orientation andmagnitude. In each detectingwindow, the
image was divided into 8×8 pixel cells and, for each cell, the pixel
level feature was aggregated to a feature map.

We collected our training images from the Image-Net [23] and
Google Image Search. All of the training images were labeled. For
each object, we used around 50 positive and 70 negative examples
to train an SVM (Support Vector Machine) classifier. The window
size and aspect ratio were learned from the training dataset. For
each object class, we trained a bi-class classifier. The LibSVM
library [24] was used to obtain the probability of the classification
for each window.

Objects were modeled as object type and object location. We
computed the object likelihoods:

P(O1 = {obj1, lO1}|eO1) and
P(O2 = {obj2, lO2}|eO2) for each sliding window with the SVM

estimation. Fig. 4 shows a sample of the detection results.

2.3. Motion analysis

The object detector gave us only the possible object locations.
To detect two objects locations involved in an action and estimate
the initial likelihood of the manipulation, we analyzed the hand
motion. After the hand motion tracking, the motion trajectory was
segmented into several pieces. The likelihood of the motion type
was estimated based on the motion segments. Generally, there are
two kinds of object interactive motion – putting an object into
a container and manipulating one of the objects relative to the
other [25,26]. In thiswork,we did not discriminate these two kinds
of motion, although they are considered different in cognition
science.
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Fig. 4. Example result of object detection with SVM classifier using HoG features.
Dots indicate detected object centers.

2.3.1. Human hand tracking
Since the inter-object affordance is represented by the object

motion interaction that is controlled by hand motion, the hand
motion needs to be tracked to model the interaction. It is difficult
to track a hand based on shape information because of the high
motion speed and the variability of the hand gesture. However,
human skin color is a very stable feature that can be used to
track human activities [27]. We tracked the hands by combining
the skin color model [28] and the TLD object tracker [29]. The
hand was initially located using optical flow and skin color in the
initial several frames. Then, in each frame, the hand location was
refined according to the color information around the previous
hand location and the shape features from the TLD tracker. Only
the right-hand motion was tracked in our experiments. There are
other 2D hand-tracking methods, such as the one in [30], which
uses the skeleton of the human upper body. Fig. 5(b) shows the
tracked trajectory.

2.3.2. Motion segmentation
After getting the hand motion trajectory, the trajectory was

segmented into several pieces according to the magnitude of the
motion velocity. There are twomodes for human limbmotion: bal-
listic and mass spring motion [31]. The ballistic motion represents
the motion that starts with long acceleration and ends with long
deceleration, such as reaching an object. The mass spring motion
is the motion with several accelerations and decelerations, or the
motion that has very low velocity. First, the trajectory was seg-
mented into small pieces by local minimal points, and then these
pieces were merged or segmented into possible ballistic and mass
spring segments. Similar to the method in [31], the segments were
classified into ballistic andmass sprint types according to the speed
feature. The features used include maximum velocity, average ve-
locity, number of local minimum points, standard deviation, mo-
tion distance, etc. Fig. 5 (c) gives the segmented velocity for one
motion of putting a pencil into a pencil case. Similar motion analy-
sis approaches exist in neuroscience and cognitive science to clas-
sify and represent motion segments with action chains [32,33].

2.3.3. Key reach motion detection
In each object interaction process, a human hand carries one

object to the location of another object. For example, in a stirring
water example, the spoon needs to be moved to the cup. We
represent this reach motion as the key reach motion. There could
be several reach motions in one action. For example, if we want to
put a book into a schoolbag, we need to first open the schoolbag,
which is the first reach motion; reach to the book, which is the

second reach motion; and take the book to the schoolbag and put
into it, which is the third reach motion. The key reach motion here
is to take the book to the schoolbag. Therefore, we named the
book as the start object and the schoolbag as the end object. In our
graphical model, book was represented as object1 and schoolbag
as object2. We wanted to detect the key reach motion and the
interacting object pair at the same time once we obtained the
detected objects and hand motion trajectory.

The ballistic segments were classified into reach motion and
non-reach motion according to acceleration and deceleration ve-
locity and time duration, average velocity and standard deviation
of speed, etc. It was difficult to determine the key reach motion
based only on hand motion information, and it was also diffi-
cult to detect whether the hand was carrying an object or not if
the object was small. But it was easy to detect the object state
around the start and end location of the reach motion. The key
reach motion started from one location (lMr1) and ended at another
location (lMr2). The distance between the location of the start ob-
ject (lO1 ) and lMr1 was modeled as a normal distribution, which was
N(|lMr1 l

O1 |; µ
O1
r , σ

O1
r ). The distance between the location of the end

object (lO2 ) and lMr2 was also modeled as a normal distribution,
which was N(|lMr2 lO2 |; µ

O2
M , σ

O2
M ). The start and end locations for

each reach motion were known. The start object, end object, and
key reachmotion were detected at the same time, according to the
two distribution values. Here, µO1

r , σ O1
r , µO2

M , and σ
O2
M were learned

from the training data set. In the key reachmotion, the humanhand
needs to carry object1 from location lO1 to lO2 , so the key reach
motion can be further ensured by checking whether the detected
start object is removed or not. This can be done by comparing the
likelihood value of object1 at location lO1 before and after the key
reachmotion. Fig. 6 shows the key reachmotion segment detected
(marked as red) from the entiremotion that put a pencil into a pen-
cil case.

2.3.4. Manipulation motion estimation
Human hand trajectory was used to estimate the likelihood

of manipulation motion. The manipulation motion was modeled
with five parameters: start time (tMs ), end time (tMe ), two reach
locations (lMr1, l

M
r2), andmanipulation type (TM ). According to Eq. (1),

we needed tomodel the conditional probability P(M|O1O2) and the
initial likelihood value forM , P(M|eM).

The term P(M|O1O2) was modeled in Eq. (2). Let lMs be the
hand location for the start time tMe , we can model P(tMs , tMe |O1O2)

as N(|lMs lO|, µO
r , σ

O
r ), and O can be O1 or O2. µO

r is the mean
grasping distance for object O, and σ O

r is the variance. Both
of them can be learned from the training data. P(lMr1|O1) and
P(lMr2|O2) are modeled as normal distributions N(|lMr1l

O1 |, µ
O1
r , σ

O1
r )

and N(|lMr2l
O2 |, µ

O2
M , σ

O2
M ), which were discussed in Section 2.3.3.

P(TM
|obj1, obj2)was computed according to the occurrence ofma-

nipulation type and object type in the training data.
P(M|O1O2) = P(tMs , tMe |O1O2)P(lMr1|O1)P(lMr2|O2)

× P(TM
|obj1, obj2). (2)

We estimated the likelihood P(M|eM) with the features from
the hand motion trajectory. Based on the segmentation in Sec-
tion 2.3.2, theballistic and mass spring segments were replaced
with labels. Themanipulationmotionswere classified according to
the number of ballistic and mass spring segments, translation rate
of the two segments, time duration, etc. Linear SVMwas trained as
the classifier and gave the likelihood of the manipulation.

2.4. Object reaction

Object reaction was modeled with two parameters, reaction
type (T R) and reaction location (lR). It was difficult to model the
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Fig. 5. Hand tracking and motion segmentation: (a) right-hand motion tracking; (b) right-hand motion trajectory; (c) motion segmentation with velocity—horizontal axis
is time (frame number), and vertical axis represents velocity (pixels per frame). Red circles are detected motion segment boundaries.

Fig. 6. Key reach motion detection: (a) red velocity segment represents key reach motion in velocity graph. The red circles are detected motion segment boundaries;
(b) The red curve shows key reach motion in image.

object reaction since the object states can change inmany possible
ways, such as in color and shape. Here, we considered only the
state change of object2 after the interaction. Similar to [4], we used
the color histogram change around object2 to represent the object
reaction. We estimated P(OR|eOR) by comparing the histogram
change with the training instances from the training dataset. We
modeled the prior P(OR|O1,O2,M) according to Eq. (3). The item
P(lR|O2) is model as N(|lRlO2 |; µR, σ R), and parameters µR and
σ R were learned from the training data. The P(T R

|O1,O2,M) was
learned from the training dataset by counting the occurrence of T R,

O1, O2 and M as shown in the following:

P(OR|O1,O2,M) = P(lR|O2)P(T R
|O1,O2,M) (3)

2.5. Bayesian network inference

After getting the key reach motion and the interactive object
pair locations,we estimated the parameters forM andOR according
to Sections 2.3.3 and 2.3.4. We did the inference with a loopy
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Fig. 7. (a) A set of trajectories modeled with three Gaussian distributions; (b) The desired trajectory is generated from the Gaussian distributions with Gaussian Mixture
Regression (GMR).

believe propagation algorithm [34] once all of the initial likelihoods
for O1, O2, M , and OR were estimated. The Bayesian Network, the
object classifier, and the manipulation classifier were trained with
fully-labeled data.

3. Interaction affordance based visual servoing

Visual servo control provides an elegant approach to control a
robot directly with 2D or 3D visual feedback due to its simplicity
and robustness. Several standard approaches have been described
in great detail in tutorials such as [35,36], in which twomain forms
of visual servoing exist. Here, we mainly focused on image-based
visual servoing (IBVS) where velocity control signal is computed
based on the 2D errors in features in the image. Position-based
visual servoing (PBVS) is another form that relies on 3D positions
of feature points in the image which can be applied with 3D
sensors such as a PrimeSense sensor. The IBVS essentially uses the
error betweenmatched features in the pre-defined goal image and
the current image to compute a velocity control signal and then
uses the signal to control the robot towards the desired pose. The
visual servo technique has been successfully implemented inmany
applications. Our previous work [37] designed an IBVS approach
to use an eye-in-hand monocular camera for combined control of
mobility and manipulation for the 9-DoF WMRA system (7-DoF
robotic arm and a 2-DoF power wheelchair platform) to execute
activities of daily living (ADL) autonomously.

Similarly, the learned affordance in interaction, which is associ-
ated to the paired objects, can be directly used to control a robot to
perform the proper manipulationmotion. Instead of programming
the robot to perform themanipulating taskmanually, we designed
an image-based visual servoing approach that uses themotion fea-
tures in the affordance as the control goals. To simplify the prob-
lem, we considered only one-hand manipulation, and one of the
paired objects was stationary. We further assumed that the rela-
tive position between the camera and the stationary object was
fixed during the learning and the robotmanipulation. The assump-
tion is usually satisfiable in a regular learning from demonstration
framework by using the same fixed camera in learning and robot
manipulation.

From multiple observations of the same task, we could further
model the key reach motion (Section 2.3.3) with several motion
states with Gaussianmixturemodel (GMM). As illustrated in Fig. 7,
a set of training key reach motion trajectories can be modeled
with a number of Gaussian distributions by the set of parameters
{πk, µk, Σk}, where k is the index of the distributions, πk is the
prior probability,µk andΣk are the center and covariancematrices
of the kth distribution respectively.

To apply visual servoing, we used the motion of the image
features to represent the relative object–object motions. Each of
the features was tracked andmodeled with GMM. After the GMMs
are trained with multiple demonstrations, a robot can generate
a series of target image features (feature trajectories) from the

learned GMMs with Gaussian Mixture Regression (GMR) [38] and
use desired image feature trajectories as the control signal to guide
the manipulator to perform the learned interactive motion.

4. Experiments and results

We evaluated our framework with a dataset collected from 6
subjects who performed 5 interactions. The data of 4 subjects was
used for training, and the data of the other 2 subjects was used
for testing. Each subject performed each action for 2 or 3 trials.
The interaction object pairs included teapot–cup, pencil–pencil
case, bottle cap–bottle, CD–CD case, and spoon–cup. The actions
for these object pairs were pouring water from a teapot to a
cup, putting a pencil into a pencil case, screwing on a bottle
cap, putting a CD into a CD case, and stirring a spoon in a cup.
All of these objects and actions were chosen because they are
very common in everyday life and are representative of different
inter-object affordance relationships. In addition to evaluating the
performances of object and action recognition with inter-object
affordance, we also demonstrated the proposed affordance-based
visual servoing approach with our FANUC robotic arm and Barrett
hand.

4.1. Training data

We trained the object classifier, the action classifier, and the
Bayesian Network in a supervisedmanner. For the object classifier,
the training images were collected from the ImageNet [23] and
Google Image Search. For the action classifier and the Bayesian
Network, the training data were collected from manually-labeled
video sequences. About 50 video sequences that were performed
by 4 subjects were used for training. For each training video
sequence, object locations, reach locations, and action type and
the start frame of the manipulation were labeled. Fig. 8 gives the
velocity-changing example for each action. Fig. 8(a–e) shows the
recorded motions of putting a CD into a CD case, putting a pencil
into a pencil case, pouring water from a teapot to a cup, screwing
on a bottle cap, and stirring water in a cup, respectively.

4.2. Object classification

The test dataset contains the action sequences performed by
two subjects. Fig. 9 shows the object classification confusion
matrices for object1, which was located at the beginning of the
key reach motion. Fig. 10 gives the likelihood confusion matrices
for object2 located at the end of the key reach motion. For each
confusionmatrix, the ith row represents the likelihood valuewhen
the ith type of object is present. For object1, it was difficult to
distinguish pencil and spoon based on their appearances because
they have a similar shape and both are small. Within the context
of human–object–object interaction, we can see that the spoon
and pencil can be distinguished accurately. The recognition rate for
object1 improved from 72.6% to 86%, and the recognition rate for
object2 improved from 75.3% to 82.8%.



Author's personal copy

Y. Sun et al. / Robotics and Autonomous Systems 62 (2014) 487–496 493

Fig. 8. Motion velocity diagram for five actions. Horizontal axis is time (frame number), and the vertical axis represents velocity (pixels per frame). (a–e) show the recorded
motions of putting a CD into a CD case, putting a pencil into a pencil case, pouring water from a teapot to a cup, screwing on a bottle cap, and stirring water in a cup,
respectively.

4.3. Action recognition

Among the five actions studied, if based only on motion fea-
tures, it was difficult to distinguish putting a CD into a CD case,
putting a pencil into a pencil case, pouring water into a cup,
and stirring water in a cup because they have the similar motion

patterns. With the human–object–object interaction framework,
they canbedistinguished. Fig. 11(a) shows the likelihood confusion
matrix that is estimated with only handmotion features. Fig. 11(b)
shows the action confusionmatrix using human–object–object in-
teraction framework. We can see that the overall average recogni-
tion rate across all objects improved from 42.6% to 83.0%.
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Fig. 9. Object1 likelihood confusion matrix. (a) shows the result using the HoG detector, (b) shows the result using framework.

Fig. 10. Object2 likelihood confusion matrix. (a) shows the result using the HoG detector, (b) shows the result using framework.

Fig. 11. Action likelihood confusion matrix: (a) result using only motion features; (b) result using framework. The ith row shows likelihood value when ith action is
categorized.

4.4. Interaction affordance visual servoing

In addition to leveraging the motion and object recognition
accuracy, the learned affordance in interaction, which is associated
to the paired objects, can be directly used to control a robot to
perform the proper manipulationmotion. Instead of programming
the robot to perform themanipulating taskmanually, we designed
a visual servoing approach that used the motion features in the
affordance as the control goals. The experiment setup is shown
in Fig. 12. A Point Grey Flea video camera was used as the visual
feedback, and our visual servo controller controlled a 6-DOF Fanuc
L200IC robotic arm and a Barrett robotic hand to perform the
learned manipulation motions.

In our experiment, as discussed in Section 3, due to the resolu-
tion limitation of our camera, it was very difficult to obtain enough
robust visual features on all the interactive objects. However, var-
ious structural features, such as contour and edges, could be used,
which is beyond the topic of the paper. To demonstrate the ap-
proach without loss of generality or diverting from the main idea

of the paper, we used the color information of both objects to seg-
ment them from the background and used their centers to perform
a simplified position-based visual servoing.

Fig. 13(a) shows the training 2D trajectories of the teapot in its
key reach motion for its interaction with a cup (relative motion
to the center of the cup). From the five trials observed, the key
reach motion could be modeled with three Gaussian distributions,
as shown in Fig. 13(b). The models of the Gaussian distributions
were trained to represent the interactive manipulation motion of
the teapot when associated with the teapot–cup pair.

After the learning phase, when our robot observed a teapot
and a cup, it looked up the stored manipulation models associated
with the pair of objects and retrieved the affordance in interaction
modeled with Gaussian distributions and then used the models to
generate the desired manipulation it should perform with GMR.
Fig. 13(c) shows the generated 2D trajectory that was used for
visual servoing input to control the robot to perform the desired
manipulation.
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Fig. 12. A visual servoing setup with a 6-DOF Fanuc L200IC robotic arm, a Barrett
robotic hand, and a fixed Flea camera.

Fig. 13. (a) The training 2D trajectories of the pouringmotion associated to a teapot
and a cup; (b) The Gaussian mixture model of the motion; (c) The desired motion
the robot is used as its control input to perform the pouring with visual servoing.

Fig. 14. The desired teapot trajectory in the image is shown in red dashed line; the
real teapot trajectory (solid blue curve) in the image of the same camera shows the
control result with the visual servoing by the FANUC robotic arm.

Fig. 14 shows one example of the robot’s manipulation motion
controlled by our visual servo controller, which follows the desired
trajectory generated by GMR accurately. The robot was able to
follow all the learned desired motion with our visual servoing
approach.

5. Conclusions and future work

In this paper, we investigated object categorization and action
recognition using an object–object-interaction affordance frame-
work. The knowledge of object affordance is learned from labeled
video sequences and represented as a Bayesian Network. The el-
ements of the Bayesian Network include objects, human action,
and object reaction. Experiments showed that with object–object-
interaction affordance knowledge, the object classification rate,
and especially the action recognition rate were significantly im-
proved.

The learned affordance knowledge and interactive motions
can be further used to teach robots manipulation skills that are
associated with the paired objects. This paper demonstrated an
image-based visual servoing approach to use the learned motion
features of the affordance as the control goals to control a robotic
arm to perform a manipulation task. The presented approach can
also be integrated into other robotic systems to handle other
manipulation tasks involving paired objects, and we plan to
combine it with our learning from demonstration approach [39]
in the future. The motion can be further analyzed and represented
with more abstract forms such as motion grammar [40], and then
integrated into existing skill learning techniques such as skill
trees [1] to manage more complicated motions.

This work is currently limited to 2D motion from a 2D camera.
It can be easily extended to the 3D space with either marker-
based or range-sensor-based motion tracking. Another limitation
is that this current Bayesian Network model is designed to process
paired-objects. Even though paired-objects are very common in
our daily living environment, not all relationships among objects
are covered to refine our approaches and corroborate the usability
of the learned affordance. In the future, we plan to model more
complicated relationships among multiple objects. One direct
expansion of this paper is to combine multiple Bayesian networks
in a piecewise manner into a much bigger network if there are
inter-connections between different pairs of objects.

Recognizing objects from a clustered scene is a broad and very
active reach topic. Our work does not directly address its challeng-
ing problems, such as partial occlusion. Therefore, our work will
not have a direct impact on clustered scene understanding. How-
ever, our approach can increase the object recognition success rate
by including interaction affordance information-comparing with-
out interaction affordance in the same setup. Therefore, our ap-
proach can be integrated into most state-of-the-art research work
handling clustered scenes to increase the object recognition suc-
cess rate.
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