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Abstract

We present a complete vision-guided robot system for model-based
three-dimensional (3D) pose estimation and picking of singulated 3D
objects. Our system employs a novel vision sensor consisting of a
video camera surrounded by eight flashes (light emitting diodes). By
capturing images under different flashes and observing the shadows,
depth edges or silhouettes in the scene are obtained. The silhouettes
are segmented into different objects and each silhouette is matched
across a database of object silhouettes in different poses to find the
coarse 3D pose. The database is pre-computed using a computer-
aided design (CAD) model of the object. The pose is refined using a
fully projective formulation of Lowe’s model-based pose estimation
algorithm. The estimated pose is transferred to a robot coordinate
system utilizing the hand–eye and camera calibration parameters,
which allows the robot to pick the object. Our system outperforms
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conventional systems using two-dimensional sensors with intensity-
based features as well as 3D sensors. We handle complex ambient il-
lumination conditions, challenging specular backgrounds, diffuse as
well as specular objects, and texture-less objects, on which traditional
systems usually fail. Our vision sensor is capable of computing depth
edges in real time and is low cost. Our approach is simple and fast for
practical implementation. We present real experimental results using
our custom designed sensor mounted on a robot arm to demonstrate
the effectiveness of our technique.

KEY WORDS—3D bin picking, active illumination, multi-
�ash camera, 3D pose estimation, cast shadows

1. Introduction

Humans are extremely good at identifying objects in the scene
and picking them. However, developing robust and efficient
vision-guided robotics systems for picking objects (Horn and
Ikeuchi 1984) has proven to be a challenging task for last few
decades. Typically, custom-designed mechanical and electro-
mechanical systems are used to feed parts in a specific pose to
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the robot (Goemans et al. 2006). In some cases, manual labor
is used to sort the parts from a pile or bin so that the robot can
pick them up. The last decade has seen an increase in efforts to-
wards automating the process of automatic part acquisition us-
ing vision systems. Vision sensors are increasingly being used
in such robotics systems as their cost is reducing and compu-
tation is becoming cheaper and faster. They are successful in
identifying, inspecting and locating parts on a conveyor belt in
carefully engineered manufacturing settings. Still, current sys-
tems can only operate in very strict conditions and can handle
geometrically simple objects.

Current systems for two-dimensional (2D)/three-dimensio-
nal (3D) pose estimation typically find simple features in in-
tensity images such as lines, corners, ellipses or circles and
try to infer the object pose based on the feature size and their
relationships with each other. Thus, they are limited to geo-
metrically simple shapes. Changing the part to a new object
often requires developing new algorithms or extensive fine
tuning. Changes in ambient illumination and complex non-
uniform backgrounds lead to the failure of vision algorithms
utilizing intensity-based features. It is desirable for the vi-
sion algorithms to be robust to illumination changes and to
be capable of handling different object shapes. In addition, the
appearance of the parts also plays an important role. Specu-
lar objects are difficult to handle due to their non-Lambertian
reflectance. Feature matching is extremely difficult for spec-
ular surfaces and texture-less objects, leading to the failure
of common 3D sensors to estimate reliable 3D geometry for
such objects. A successful vision system should be able to han-
dle variations in the operating conditions. These variations in-
clude (a) changing illumination conditions due to the ambient
illumination, (b) non-uniform backgrounds and (c) objects of
varying shape (3D/planar objects) as well as reflectance prop-
erties (diffuse/specular, textured/texture-less).

In this paper, we address several of these problems and
present real experimental results to demonstrate the effective-
ness of our system. Our system is based on using depth edges
(silhouettes) of objects. We show that reliable depth edges can
be obtained in real time by simply casting shadows from dif-
ferent directions without estimating 3D geometry. We show
that by using depth edges as features, one can eliminate the
need for accurate 3D reconstruction for 3D pose estimation,
which is difficult for specular objects. Depth edges also en-
able our approach to be independent of scene texture and in-
tensity edges, allowing texture-less objects as well as illumina-
tion changes to be handled easily. By using depth edges as fea-
tures, we use significantly more information about the object
shape than is provided by specific features such as lines, el-
lipses or circles. Our approach can thus handle complicated 3D
shapes which may not have enough of these simple discrimi-
nating features. It also leads to a simple approach for pose esti-
mation which typically has high computational complexity in
matching set of specific features with the known model of the
object. Another important distinction with the traditional 2D

sensors is that the cast shadows provide occlusion information,
which allows easy segmentation of the objects. Such informa-
tion cannot be obtained from the intensity images. As shown in
later sections, we use the occlusion information as a constraint
to avoid incorrect and over-segmentation of parts. Our system
currently handles singulated (non-stacked) objects, where ob-
jects are separated from each other but can have any possible
position and orientation. We present real experimental results
using a robot arm on several of the above scenarios. Exten-
sions 1 and 2 show our system in operation for picking an
object with a complex 3D shape (shown in Figure 1) and a
specular object (shown in Figure 2), respectively.

1.1. Contributions

The contributions of our paper are as follows:

� We present a complete system for 3D pose estimation
and picking of objects using a low-cost modified sensor.

� We show that depth edges are sufficient to estimate the
precise 3D pose of the object for picking without requir-
ing absolute depths.

� We show that cast shadows can be used to estimate
depth edges as well as to simplify segmentation of ob-
jects. We use physical constraints based on depth edges
and shadow boundaries that avoid incorrect and over-
segmentation of objects.

1.2. Benefits and Limitations

Our approach has several benefits over related approaches as
follows:

� Our system handles complex ambient illumination and
non-uniform shiny backgrounds.

� Since depth edges are independent of scene reflectance
edges, our approach works well with objects having
different reflectance properties such as diffuse (Lam-
bertian), specular as well as texture-less objects.

� Our approach can handle objects of different shapes and
sizes since it does not depend on object-specific features
such as lines, circles, etc. Thus, new objects can be han-
dled without any change in the algorithm, except for the
pre-computation of a database of the object silhouette
features.

� Our system utilizes a low-cost modified 2D sensor and
does not require an expensive 3D sensor, yet provides
3D position and orientation of objects.
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Fig. 1. Captured images of a scene with three brass hooks using our camera. Here I1 to I8 correspond to the images taken with
different flashes (I1 corresponds to the image taken with the flash on top of the camera)� I0 corresponds to the image taken
without any flash. Note how the shadows move with the position of the flash.

Fig. 2. Specular objects. 3D range scanners do not provide reliable geometry information on specular objects. In addition, reliable
2D intensity-based features are not also not obtained on specular objects due to inter-reflections. Our approach can easily handle
specular objects and estimate reliable depth edges.

� Our approach is well suited for real applications as it is
robust, simple and leads to fast implementation.

Some of the limitations of our approach are as follows:

� We currently cannot handle stacked specular objects, as
the shadows cast on the specular objects are not esti-
mated reliably.

� For thin objects, the shadows may become detached
from the object leading to spurious depth edges.

� Although we can handle shiny backgrounds, dark
(black) backgrounds reduce the contrast of shadows.
Depth edges cannot be estimated reliably in that
case.
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� Transparent and translucent objects cannot be handled
by our approach due to inter-reflections of light leading
to unreliable depth edges.

Although the proposed system works in open loop, closed-
loop error correction and visual servoing approaches can be
added to the system. These approaches could use intensity-
only features or depth edges for dynamic scenes as shown in
Raskar et al. (2004).

1.3. Related Work

Vision-based robot systems have been the focus of significant
research in both academia and industry. These systems typi-
cally employ single/multiple cameras and illumination devices
to analyze the scene, locate the part and provide feedback to
the robot arm for subsequent operations. To successfully grip
and pick up parts, the vision system needs to recognize the po-
sition and the orientation of the objects. The vision sensor can
be mounted on the end-effecter of the robot arm (Allen et al.
1993� Hutchinson et al. 1996� Chaumette 1998) or located at
a position near the robot (Liu et al. 1999� Astolfi et al. 2002�
Piepmeier et al. 2004).

Vision-based robot systems (Horn 1986) can be broadly
classified into (a) 2D, (b) 2.5D and (c) 3D vision systems.

2D vision systems have been successfully employed in sev-
eral industrial applications (see, e.g., http://www.cognex.com).
Most of the current vision systems fall into this category. These
systems have been used for several tasks such as inspection and
limited part acquisition. Typically such systems can recognize
the in-plane orientation and location of the part but cannot de-
termine the out-of-plane rotation and the distance of the part
precisely. They require parts to be non-overlapping and placed
on a flat surface. A model-based approach can be used for 3D
pose estimation. Edges are extracted in captured 2D images,
and the contours of the object are detected by connecting the
edges. The detected contours are then matched with a stored
computer-aided design (CAD) model and the location and ori-
entation of the object is estimated (Tuji and Nakamura 1975�
Perkins 1977� Turney et al. 1985). However, these systems are
highly susceptible to background color and illumination varia-
tions. In contrast, our approach based on depth edges can eas-
ily handle challenging backgrounds and non-uniform illumi-
nation.

2.5D vision systems augment the 2D vision system by also
calculating the distance of the object from the change in the
size of the image of the object or by finding depths at a few
points. However, they cannot estimate the exact out-of-plane
rotation and are often unreliable in their depth estimates. Such
systems often misleadingly claim to estimate 3D pose but can
only handle a few degrees of out-of-plane rotation for simple
objects.

3D vision systems use sensors for estimating the 3D geom-
etry of the scene. The object is recognized and localized by

comparing the estimated range image with the standard ori-
entated CAD models in a database (Besl and Jain 1985� Chin
and Dyer 1986� Brady et al. 1988). 3D range data can either
be obtained with shape-from-texture (Brady 1981), laser trian-
gulation or edge-based binocular stereo (Pollard et al. 1985�
Ayache and Lustman 1991). Some of the popular approaches
are described below. Our system does not require a 3D sensor
but it can estimate the 3D pose of the object using depth edges:

� Stereo vision. Stereo systems use two cameras looking
at the object to estimate the object’s depth. The corre-
sponding features are localized in the images captured
from the two cameras and the geometric relationship
between the cameras can be used to identify the depth
of the feature points. However, finding the correspond-
ing features itself is a challenging problem, especially
for parts which are specular, shiny and homogeneous
(texture-less). In addition, stereo has a high degree of
sensitivity of the depth estimates with the noise in fea-
ture localization. Another problem with stereo is that the
depths are recovered only at the feature points and not
on the entire object. The reduced accuracy can be tol-
erated for certain applications such as un-racking body
panels in body shops, but is not sufficient for accurate
picking of the object.

� Laser triangulation. These systems use structure light
(see, e.g., http://www.sick.com/gus/products/new/s300/
en.html.html) to create a pattern on the surface of the ob-
ject, which is viewed from a camera. The laser triangu-
lation can recover the 3D point cloud on the object sur-
face. This technology has been used for applications in-
volving edge tracking for welding, sealing, glue deposi-
tion, grinding, waterjet cutting and deburring of flexible
and dimensionally unstable parts. Use of lasers for part
pose determination requires registration and account-
ing for shadows/occlusions. Laser triangulation does not
work well on specular shiny objects due to laser light
being reflected from the object surface. In addition, the
use of lasers also leads to safety issues when deployed
in close proximity to human operators.

Active illumination: controlling illumination is important
for vision algorithms. Back-light illumination is used to seg-
ment objects by illuminating them from behind. In bright-field
illumination, the light comes in approximately perpendicularly
to the object surface. The whole object appears bright, with
features displayed as a continuum of gray levels. This sort of
illumination is used for most general-vision applications. In
dark-field illumination, the object is illuminated at a low angle
from a point parallel to its surface. Texture and other angular
features appear bright while most of the object appears dark.
Dark-field illumination is useful for imaging surface contam-
ination, scratches and other small raised features. In coaxial
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illumination, the object is illuminated from precisely the di-
rection of the imaging lens using a beam-splitter. Coaxial illu-
mination is used to inspect features on flat, specular surfaces,
to image within deep features and to eliminate shadows. Shad-
ows are usually considered a nuisance, but in our approach the
illumination source is intentionally placed close to the camera
and cast shadows are utilized to estimate depth edges.

Several vision approaches use active illumination to sim-
plify the underlying problem. Nayar et al. (1995) recover the
shape of textured and textureless surfaces by projecting an il-
lumination pattern onto the scene. Shape from structured light
(Scharstein and Szeliski 2003� Zhang et al. 2004) has been an
active area of research for 3D capture. Raskar et al. (2004) pro-
posed the multi-flash camera (MFC) by attaching four flashes
to a conventional digital camera to capture depth edges in a
scene. Crispell et al. (2006) exploited the depth discontinuity
information captured by the MFC for a 3D scanning system
which can reconstruct the position and orientation of points
located deep inside concavities. The depth discontinuities ob-
tained by the MFC have also been utilized for robust stereo
matching (Feris et al. 2005), recognition of finger-spelling ges-
tures (Feris et al. 2004b), automated particle size analysis with
applications in mining and quarrying industry and for 3D seg-
mentation (Koh et al. 2007). Our approach also uses a variant
of MFC (with eight flashes) to extract depth discontinuities,
which are then used to segment objects and estimate their 3D
pose.

Model-based pose estimation has been a topic of significant
research in computer vision. Initial work on using a CAD
model and features in intensity images for 3D pose estima-
tion was shown in Lowe (1987, 1991). Dementhon and Davis
(1995) proposed an algorithm for pose estimation from given
2D/3D correspondences. Silhouettes have also been used for
model-based human pose estimation (Gavrila and Davis 1996�
Sminchisescu and Telea 2002� Agarwal and Triggs 2004) and
object recognition/classification (Marr and Nishihara 1978�
Gorelick et al. 2006). In these approaches, background seg-
mentation to obtain the silhouettes is typically a difficult prob-
lem. We show that by using cast shadows, obtaining silhouettes
is easy even for challenging environments. Several techniques
on classifying objects based on silhouettes assume complete
closed contours, but our approach can work with incomplete
silhouettes and missing depth edges.

2. System Overview

Our system consists of a robot arm equipped with a gripper
and a vision sensor as shown in Figure 3. The overview of
our approach is shown in Figures 4 and 5. The robot arm is
mounted with a camera surrounded by eight flashes. Eight im-
ages are captured, each by turning on a different flash. In addi-
tion, an image is also captured with all of the flashes turned off.
The images are processed to obtain depth edges as described in

Fig. 3. Experimental setup. A six-degree-of-freedom robot arm
equipped with a pneumatic gripper is used for experiments.
The camera attached to the robot arm is housed inside a plas-
tic case and is surrounded by eight light emitting diodes con-
trolled by a micro-controller. Objects to be picked are placed
on a table as shown. The world coordinate system is attached
to the base of the robot with the axis directions as shown.

Section 2.1. The silhouettes are then segmented into different
objects (Section 2.2). Using the CAD model of the object, a
database of silhouettes is generated for several poses. The ob-
tained silhouettes are matched against the database to estimate
the coarse pose which is further refined using the CAD model
(Section 3). The final pose estimated is transferred to the ro-
bot coordinate system using the hand–eye and camera calibra-
tion parameters. The location of a pre-decided pick point and
pick direction for the object is estimated in the robot coordi-
nate system, using which the robot arm picks the object. Next
we describe each of these steps in detail.

2.1. Estimating Depth Edges and Shadow Edges by Casting
Shadows

The key difference in our system over other systems is our vi-
sion sensor, which consists of a video camera surrounded by
eight flashes. This technique for finding depth edges was first
proposed by Raskar et al. (2004). Illumination from flashes is
often used in machine vision in the form of ring lights to avoid
shadows, or colored LEDs for color-based analysis. In our ap-
proach, we turn on one flash at a time to cast shadows and cap-
ture an image. Since shadows will be cast due to object bound-
aries and not due to reflectance boundaries, shadows give in-
formation about the depth discontinues of the object as shown
in Figure 1. To compute the depth edges, we use the technique
described in Raskar et al. (2004) and Koh et al. (2007). Let
I1 � � � I8 denote the images taken with flashes turned on.
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Fig. 4. Flowchart of our approach. Eight images are captured by turning on light emitting diodes surrounding the camera in
succession (only four are shown for simplicity). Cast shadows are utilized to compute depth edges (green) and shadow edges
(orange) in the scene. Depth edges are then segmented into silhouettes corresponding to different objects. Each silhouette is then
used to estimate the 3D pose of the corresponding object as shown in Figure 5.

Fig. 5. Flowchart describing 3D pose estimation. The pose for each object is estimated using the corresponding segmented
silhouette. A coarse pose estimate is achieved by feature matching with a pre-computed database of silhouette features to obtain
approximate rotation angles. Fine pose refinement using the CAD model is then performed to estimate accurate rotation and
translation of the object. Overlay of the rendered CAD model on I0 and the rendered CAD model silhouette on the segmented
object silhouette using the final estimated pose is shown at the bottom for one of the objects.

2.1.1. Canceling Ambient Illumination Effects

To cancel the effects of the ambient illumination, we capture
an image without any flash (referred to as I0). The effect of am-
bient illumination is removed by subtracting I0 from I1 � � � I8.
This simple procedure provides our system with the robust-
ness towards illumination changes in the scene. Let D1 � � � D8

denote the images after subtracting I0.

2.1.2. Finding Depth Edges

To compute depth edges, first a max composite image, Dmax,
is obtained by taking the maximum of intensity value at every
pixel from D1 � � � D8:

Dmax�x� y� � max
i�1���8

�Di �x� y��� (1)
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Fig. 6. Depth and shadow edges. Left: C denotes the camera
and L denotes one of the light sources. Depth edges are at-
tached to the object, while shadow edges are defined as the
boundary between the shadow and the background. Right:
Depth and shadow edges in the camera image.

Note that Dmax will be a shadow-free image. Then, ratio im-
ages are calculated as

Ri �x� y� � Di �x� y��Dmax�x� y�� i � 1 � � � 8� (2)

Ideally, in the absence of noise with linear camera response,
each ratio image Ri equals zero for shadowed and one for
non-shadowed parts of the image. Depth edges are obtained
by estimating the foreground to shadow transition in each ratio
image (Figure 6) and combining all of the estimates. To han-
dle noise and non-linearities, we run oriented Sobel filters on
ratio images and add the filter responses to obtain a depth edge
confidence map Cdepth, which is thresholded to obtain binary
depth edges.

Cdepth�x� y� �
�

i�1���8

hi �x� y� � Ri �x� y�� (3)

where � denotes convolution and hi �x� y� corresponds to the
oriented Sobel filter according to the position of the flash with
respect to the camera for that image. For example, for the im-
age taken with the flash on the left side of the camera, the
shadows will be casted on the right of the objects. Scene depth
edges then correspond to those vertical edges, which are bright
on the left and dark on the right and can be obtained by apply-

ing the filter given by

�
���

1 0 �1

2 0 �2

1 0 �1

�
���. Similarly, for the image

corresponding to the flash on the right of the camera, the cor-

responding filter is given by

�
���
�1 0 1

�2 0 2

�1 0 1

�
���. We use hysteresis

thresholding to obtain binary depth edges. Note that the entire
procedure for obtaining depth edges involve simple operations
such as filtering and obtaining ratios and can run in real time.

2.1.3. Finding Shadow Edges

We define shadow edges as the shadow to background tran-
sition in captured images (Figure 6). The shadow edge
confidence map, Cshadow, can be obtained similarly by simply
flipping the sign of corresponding oriented Sobel filter:

Cshadow�x� y� �
�

i�1���8

�hi �x� y� � Ri�x� y�� (4)

Figure 7 shows the estimated depth and shadow edges for the
scene containing three brass hooks as shown in Figure 1. Note
that the region between the depth and shadow edges corre-
sponds to the shadow region and thus shadow edges provide
occlusion information. Another key idea of our approach is
to use this information present in the shadow edges. In the
next section, we show how shadow edges can be used to sig-
nificantly simplify the segmentation of depth edges into object
silhouettes. Note that the shadow edges are unique to our ap-
proach and cannot be obtained from traditional 2D intensity
images.

2.2. Segmentation Using Depth Edges and Shadow Edges

Image and range segmentation (Hoover et al. 1996� Yim and
Bovik 1998� Comaniciu and Meer 2002� Shapiro and Stock-
man 2001� Shi and Malik 2000� Christoudias et al. 2002) is a
well-researched area in image processing and computer vision.
Although 2D segmentation can segment an image into seman-
tic regions, it cannot provide occlusion information due to the
lack of shadows or depth information. Even when a depth map
of the scene is available, we need to explicitly find occlusions
using depth edges. In contrast, using depth and shadow edges
together leads to a simple and effective segmentation algorithm
for singulated objects.

The key issue in segmenting obtained silhouettes into dif-
ferent objects is missing depth edges and incomplete contours.
Suppose that complete contours were obtained for depth edges
and shadow edges. Since we assume that the objects are not
stacked and are singulated, we can simply find connected com-
ponents in depth edges. Each connected component then corre-
sponds to a particular object silhouette. However, in practice,
the silhouettes are incomplete and noisy due to image noise,
specularities on specular objects, pixel saturation, low-contrast
(soft) shadows and other non-linearities. Thus, one needs to
complete depth edges to form closed contours for segmenta-
tion.

Edge completion is also an active area of research in image
processing. To complete missing edges, Gestalt rules are ap-
plied to link perceptually similar edges (Kimchi et al. 2003).
This involves several heuristics such as edge proximity, edge
length, etc. These techniques, however, require several tun-
ing parameters, are not robust and are highly susceptible to
noise. To this end, we propose physical constraints which help
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Fig. 7. Detected depth edges (green) and shadow edges (orange) using our approach on the scene shown in Figure 1. In compari-
son, Canny edges (Canny 1986) on ambient image I0 are also shown in the middle. Note that the Canny intensity edges are noisy
and do not provide reliable features due to the non-Lambertian reflectance properties of the brass hook.

in completing depth edges. In any scene, cast shadows lead
to physical constraints between the depth and shadow edges.
Cast shadows have a penumbra region and depth edges as
defined above correspond to the discontinuity on one side of
the penumbra, while the shadow edges correspond to the dis-
continuity on the other side of the penumbra. Thus, two phys-
ical constraints can be derived as follows:

1. for every depth edge pixel, there exists a shadow edge
pixel�

2. a depth and shadow edge cannot exist simultaneously at
the same pixel�

These two rules enable us to complete missing depth edges
to form closed contours. We achieve this by fitting line seg-
ments to the depth edges and shadow edges and extending
each depth edge line segment. A consequence of these rules
is that (a) for every extended depth edge line segment, there
should be a parallel shadow edge line segment, and (b) ex-
tended depth edges line segments cannot intersect any existing
shadow edge. Every extended line segment is checked with
respect to the above rules and is kept if it satisfies both of
them. This significantly helps to remove spurious connections
as shown in Figure 8. In practice, we discard line segments
with length smaller than a threshold (15 pixels). Note that if a
line segment is connected on both ends to other line segments,
it is not extended. Thus, only those line segments with at least
one open end-point (terminal points) are checked for exten-
sion. In addition, the process is non-recursive. Typically, a few
tens of terminal points are obtained and the entire process take
less than 0�5 s in C/C++.

At the end of this stage in the system, we obtain close con-
tours for depth edges for which connected component analysis
results in segmentation as shown in Figure 9. An important
point to note here is that the extended depth edges are only
used for segmentation and not for pose estimation. Once the
silhouettes corresponding to an object are segmented, we only
use the original depth edges for pose estimation. We also ig-
nore the depth edges inside the object to avoid spurious depth

Fig. 8. Completing depth edges using information from
shadow edges. Two objects A and B are shown with depth
edges in green. Depth edges are missing for both A and B.
Without using any constraints, edge completion could result in
six new connections as shown on the left and heuristics need
to be applied to avoid incorrect connections. Instead of using
heuristics, we use the physical constraint that depth edges and
shadow edges cannot intersect. This automatically removes the
incorrect connections as shown on the right.

Fig. 9. Segmentation of depth edges into different objects.
Depth edges inside the object (internal silhouettes) are ignored
to avoid spurious edges due to specular reflections and only
external silhouettes are kept. Each of these three silhouettes is
used to estimate the pose of the corresponding object.

edges due to specularities and only use the outermost silhou-
ettes for pose estimation, but this may lose useful internal sil-
houettes.
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3. 3D Pose Estimation

In the last section, we described how depth and shadow edges
are estimated and used for object segmentation. In this sec-
tion, we describe how the segmented silhouettes are used for
estimating the 3D position and orientation of the object. For
multiple objects in the scene, the process is repeated for every
object. We assume that a CAD model of the object is known
in advance and thus our approach is model based. The pose
estimation involves obtaining the rotation and translation pa-
rameters of the object. The pose estimation is performed in
two steps for faster processing. In the first step, a coarse pose
is estimated to obtain the approximate rotation angles. In the
second step, all six rotation and translation parameters are op-
timized.

3.1. Coarse Pose Estimation

In coarse pose estimation, the optimization is performed over
the rotation angles only. Several techniques based on moments
have been proposed for estimating the pose based on silhou-
ettes and we propose to use Zernike moments. The Zernike
moment formulation outperforms the alternatives in terms of
noise resilience, information redundancy and reconstruction
capability (Teh and Chin 1988). The pseudo-Zernike formu-
lation proposed by Bhatia and Wolf (1954) further improves
these characteristics.

Let s�x� y� be the binary image corresponding to the esti-
mated silhouette of an object. The complex Zernike moments,
M�x� y�, of s�x� y� are obtained by taking the projection of
s�x� y� on complex Zernike polynomials Vmn

M�x� y� � m � 1

�

	
x

	
y

s�x� y�Vmn�x� y�� dx dy�

x2 � y2 � 1� (5)

where m defines the order of the moments and � denote com-
plex conjugate. The integer n is such that

m � 	n	 � even� 	n	 � m� (6)

The Zernike polynomials Vmn are expressed in polar coordi-
nates as

Vr�� � Rmn�r� exp�


�� 1�n��� (7)

where r� � are defined over the unit disk and

Rmn�r� �
�m�	n	��2�

s�0

��1�s �m�s�!
s!��m�	n	��2�s�!��m�	n	��2�s�!r

m�2s (8)

if (6) is satisfied, otherwise Rmn�r� � 0.
To calculate the Zernike moments, the image (or region of

interest) needs to be mapped to the unit disk using polar co-
ordinates. We first find the bounding box of the segmented

object silhouette in the image and resample the bounding box
to a square of size 129
 129. We use m � 6, giving rise to 36
Zernike basis polynomials of size 129 
 129. Thus, for each
silhouette, a 36-dimensional feature vector is obtained.

3.1.1. Building Pose Database

Given the CAD model of the object, we find silhouettes in dif-
ferent poses and store their Zernike moments in a database.
We sample the pose space uniformly, at an equal interval of 9�,
leading to 360�9 � 40 rotations along each axis. This results
in a database of 403 � 64�000 poses. We use a fast silhouette
rendering algorithm described in Raskar and Cohen (1999) to
compute silhouettes using a CAD model. The entire database
generation takes 10–15 minutes on a desktop PC. Note that this
database generation needs to be done only once for an object.

The coarse pose is obtained by finding the L2 norm of the
Zernike moments of the query silhouette with the moments
stored in the database and choosing the pose corresponding to
the minimum L2 norm. Figure 10 shows the result of the coarse
pose estimation for object 2 in Figure 9.

Fig. 10. Pose estimation results on object 2. Top left: Rendered
CAD model using rotation angles obtained after coarse pose
estimation. Top right: Rendered CAD model after fine pose
refinement, which updates all six rotation and translation pa-
rameters. Bottom left: Overlay of the rendered CAD model on
I0 according to the final estimated pose. Bottom right: Over-
lay of the rendered CAD model silhouette (green) on the seg-
mented object silhouette (red) shows the success of the fine
pose refinement. Here X�Y� Z denote translation and A� B�C
denote rotation angles after fine pose refinement.
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3.2. Fine Pose Refinement

Note that since the Zernike moments are normalized with re-
spect to the scale and the translation, the obtained coarse pose
is close to the correct pose only in terms of rotation angles.
The fine pose refinement procedure then updates all six para-
meters. The goal in pose refinement is to find that rotation R
and translation T , for which the projection of the CAD model
silhouette matches the segmented silhouette of the object in
the scene. We use OpenGL to compute the 3D silhouette of
the CAD model for the given pose.

We refine the pose starting with the rotation angles given
by the coarse pose estimate. The initial translation and scale
is obtained by matching the scale and image translation of the
projected CAD model silhouette with the segmented object sil-
houette. Note that given a set of 3D/2D correspondences, one
could use existing algorithms for model-based pose estimation
(e.g. the algorithm of Lowe (1987)). However, the 3D silhou-
ettes depend on the pose itself and it is computationally expen-
sive to update them at each iteration.

For fine pose refinement, we use an outer minimization
loop. At each iteration of outer minimization, the CAD model
is rendered and the 3D coordinates of the CAD model silhou-
ette are obtained using the rendered silhouette and the OpenGL
depth buffer. Then, correspondences between the 3D CAD
model silhouette and the segmented 2D object silhouette are
obtained. Given this set of 3D–2D correspondences, rotation
and translation are updated using a fully projective formula-
tion described in Araujo et al. (1998), which is an improve-
ment of the original algorithm of Lowe (1987). The updated
pose is again used to obtain new 3D silhouettes and correspon-
dences for the next iteration of outer minimization. The error
at each iteration of outer minimization is calculated using the
mismatch between the projected CAD model silhouette and
the segmented object silhouette using the distance transform
(Fabbri et al. 2007). Let s�x� y� denote the segmented object
silhouette and p�x� y� denote the projected CAD model sil-
houette. Then the error between them is defined as

e �
�

x�y s�x� y�d�p�x� y��

ns
�
�

x�y p�x� y�d�s�x� y��

n p
� (9)

where d��� denote the distance transform operator, ns denote
the number of silhouette pixels in s�x� y� and n p denote the
number of silhouette pixels in p�x� y�. If both silhouettes
match, e will be equal to zero. Outer minimization is per-
formed until the error goes below some pre-defined thresh-
old �0�05�. Usually 10–15 iterations are sufficient. After fine
pose refinement, the rotation and translation of the object in
the camera coordinate system is known as shown in Figure 10.

3.3. Picking the Object

Let R and T denote the estimated rotation and translation of
the object in the camera coordinate system. Let

Mobject
camera �

�
R T

0 1



denote the 4 
 4 estimated pose matrix. The robot arm is
equipped with a gripper for picking the object. In order to pick
the object, it needs to be located in the world coordinate sys-
tem. First, the transformation between the camera and the ro-
bot gripper (Mcamera

gripper) is obtained by the hand–eye calibration
(Shiu and Ahmad 1989� Zhuang and Roth 1996). The trans-
formation between the robot gripper and the world coordinate
system Mgripper

world can be computed with forward kinematic and
encoder readings. The transformation matrix of the object in
the world coordinate system is then given by

Mobject
world � Mgripper

world Mcamera
gripper Mobject

camera� (10)

In order to pick the object, a pick point and a pick di-
rection on the CAD model need to be specified. If pobject �
px � py� pz� denotes the pick point on the CAD model, then
the location of the pick point in the world coordinate system,
pworld, is given by

pworld � Mobject
world

�
�������

px

py

pz

1

�
�������
� (11)

Then pworld is sent to robot controller. The gripper is also ro-
tated according to the final pose angles to align with the pick
direction (e.g. vertical) with respect to the object. Note that the
pick point and the pick direction can be different for differ-
ent poses of the object. A trajectory is computed and the robot
controller moves the grippers accordingly. After the gripper
reaches the gripping pose, it closes to pick up the object and
then moves it to a predefined location with a new trajectory. If
there are multiple objects in the scene to pick, pose estimation
for the next object is performed while the robot is picking the
current object to reduce operational delay.

4. Results

In this section, we demonstrate the effectiveness of our system
using several examples on objects with complex 3D shapes,
texture-less objects, shiny backgrounds and specular objects.
Extensions 1 and 2 show our system in operation for picking
an object having complex 3D shape (shown in Figure 1) and a
specular object (shown in Figure 2), respectively.

4.1. Implementation

Our system consists of a Mitsubishi MELFA RV-6S six-axis
industrial robot equipped with a pneumatic gripper as shown
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Fig. 11. 3D pose estimation results for all three objects shown in Figure 1. The top row shows the overlay of the rendered CAD
model silhouette (green) according to the final estimated pose on the segmented object silhouette (red). The bottom row shows
the overlay of the rendered CAD model according to the final estimated pose on I0.

in Figure 3. The robot is directly controlled by a Mitsubishi
MELFA CR2B controller. The robot has 0�02 mm repeata-
bility and has been fully calibrated by Mitsubishi. The vision
sensor is composed of a Dragonfly VGA camera from Point-
Grey (http://www.ptgrey.com) surrounded by eight Lumiled
light emitting diodes (LEDs) and is housed in a plastic box.
A micro-controller inside the camera box (Figure 3) triggers
the camera and flash synchronously. Extension 3 shows the
flashes triggering in succession around the camera.

The camera is rigidly mounted onto the robot hand imme-
diately after the wrist roll joint. The camera is calibrated
using the Matlab Camera Calibration Toolbox available
at http://www.vision.caltech.edu/bouguetj/calib_doc/. Hand–
eye calibration is performed using the software available at
http://www.vision.ee.ethz.ch/�cwengert/calibration_toolbox.
php. The center of the camera is 128�3 mm away from the
center of the gripper in the vertical direction and 150�4 mm
off the center of the robot wrist roll joint, as estimated by the
hand–eye calibration. The camera is placed � 375 mm above
the table for capturing images. Nine images are captured, eight
with individual flashes turned on and the last with all flashes
turned off to capture the contribution of the ambient illumi-
nation. Software is written in C/C++ and takes � 1 second
for image capture, segmentation and coarse pose estimation
and 5–10 seconds for fine pose refinement depending on the
complexity of the CAD model. Note that for multiple objects,
fine pose refinement for the next object is done while picking
the current object to reduce the operational delay.

4.2. Objects With Complex 3D Shape

The brass hook example shown in Figure 1 is an example of an
object with complex 3D shape. In addition, the brass hook does
not have diffuse Lambertian reflectance properties. The 3D
scanner fails in obtaining a reliable geometry for this object.
Our approach can easily find silhouettes of this object having
complex 3D shape and non-Lambertian reflectance properties.
Figure 11 shows the pose estimation result for all three ob-
jects shown in Figure 1. Extension 4 shows a video of fine
pose refinement starting from the initial coarse pose for one
of the brass hooks. Extension 1 shows a video of the robot
picking two brass hooks from the table and placing them in a
pre-determined pose on the side of the table.

4.3. Non-uniform Shiny Background

Shiny reflective backgrounds create significant problems for
3D scanners and 2D vision systems. In contrast, our system
can work well even in such harsh environments. A example
is shown in Figure 12 where we place a shiny metallic plate
as the background. First, note that the ambient illumination
image (I0) has non-uniform illumination due to the metallic
background and thus leads to a significant amount of noise
for Canny edges. Second, flashes result in strong specularities
and saturation in images as shown in Figure 12. Note that the
specularities on the background change their spatial location
in the image as the flashes go around the camera. This fact
is used to remove the specular highlights. We use the gradi-
ent domain method described in Raskar et al. (2004) and Feris
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Fig. 12. Non-uniform shiny background. A metallic plate is placed as the background. The ambient illumination image I0 shows
non-uniform illumination on the background. Images captured with a flash show specularities and highlights due to the metallic
plate. These can be removed if their location in the image changes.

Fig. 13. Non-uniform shiny background. Our technique results in reliable depth edges. In comparison, Canny intensity edges (on
ambient illumination image) result in significant noise due to non-uniform illumination and metallic background. Shown are the
Canny edge detection results using two different thresholds. Increasing the threshold reduces noise but also loses important edges
of the objects.

et al. (2004a) to reduce the specular highlights on the back-
ground. Figure 13 shows the depth edges estimated using our
technique compared with Canny edges on I0. Our approach is
robust against the effects of strong highlights and non-uniform
background illumination. The 3D pose estimation result on
both of the objects are shown in Figure 14.

4.4. Texture-less Objects

Our approach can also handle texture-less objects with no
change in algorithm. A challenging example of white objects

on a white background is shown in Figure 15, on which in-
tensity edge detection does not give reliable features. Stereo-
based algorithms will also fail on texture-less objects. Note
that the depth edge estimation using our technique is noise-
less. Figure 16 shows the overlay of the rendered CAD model
silhouette on the segmented object silhouette and the rendered
CAD model on I0 after final pose estimation.
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Fig. 14. Non-uniform shiny background. Overlay of the rendered CAD model silhouette on the segmented object silhouette and
the rendered CAD model on I0 for both objects after fine pose estimation. Note that although depth edges have noise, silhouettes
used for pose estimation are clean as only the outermost object boundary is utilized.

Fig. 15. White objects on a white background. Texture-less and colorless objects are difficult to handle for stereo-based 3D
reconstruction algorithms. Useful intensity edges are also not obtained on such scenes. In contrast, our technique works well on
such scenes since depth edges are obtained by casting shadows. The extracted depth edges are significantly better compared with
Canny edges on I0.

4.5. Specular Objects

Our approach also works well on specular objects on which
3D scanning fails to give reliable depth estimates. Figure 2
shows an example on two specular pipes. Note the speculari-

ties within the object and inter-reflections between the object
and the background. This creates problems for intensity edges,
so that clear object boundaries cannot be obtained using a tra-
ditional 2D camera. However, as shown in Figure 2, reliable
depth edges can be easily obtained using our approach. Fig-
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Fig. 16. Pose estimation results on objects shown in Figure 15.
The top row shows the overlay of the rendered CAD model on
I0 and the bottom row shows the overlay of the rendered CAD
model silhouette on the segmented object silhouette according
to the final estimated pose for all three objects.

Fig. 17. Pose estimation results on objects shown in Figure 2.
The top row shows the overlay of the rendered CAD model on
I0 and the bottom row shows the overlay of the rendered CAD
model silhouette on the segmented object silhouette according
to the final estimated pose for both objects.

ure 17 shows the pose estimation results on both objects. Ex-
tension 2 shows a video of the robot picking two specular pipes
from the table and placing them in a pre-determined pose on
the side of the table. Extension 5 shows a video of fine pose
refinement starting from the initial coarse pose for one of the
specular pipes.

4.6. Camera Non-parallel to Background

Our approach can handle general camera orientation that is
not necessarily parallel to the background. Figure 18 shows

an example, where the camera position is not parallel to the
background for capturing the images. The captured images and
rendered 3D model silhouettes on one of the images are also
shown. The estimated pose allows gripping of the object as
shown. Note that the object has concavities and holes. Exten-
sion 6 shows the video demonstrating picking for this object.

In summary, we have shown that our technique works well
on objects with different shapes and reflectance properties, as
well as non-uniform background. In handling a new object, our
system only requires the CAD model of the object.

5. Analysis

We now analyze the accuracy of our system. There are several
sources of error that could lead to the failure of the picking
process. These sources include:

� image noise

� camera calibration and hand–eye calibration errors�

� camera lens distortions (radial distortion, barrel distor-
tion, vignetting, etc.)�

� errors in the CAD model of the object�

� missing and spurious depth edges�

� errors in 3D pose estimation.

In the following, we analyze these errors in several ways.

5.1. Calibration Errors

The camera calibration and hand–eye calibration was per-
formed using a standard checkerboard. The checkerboard was
placed on the table and images were captured by moving the
robot arm to different positions. Figure 19 shows 4 out of 11
checkerboard images used for camera and hand–eye calibra-
tion. First, the intrinsic camera calibration parameters includ-
ing the focal length, principal point and radial distortion pa-
rameters and the extrinsic parameters (rotation and translation
of camera for each position) were obtained. The average re-
projection pixel error of the checkerboard corners on to the
captured images was 0�14 and 0�13 pixels in x and y direc-
tions, respectively.

Next, hand–eye calibration was performed and the location
of the checkerboard in the world coordinate system was deter-
mined for each of the 11 views. Since the checkerboard was
not moved, its location in the world coordinate system should
remain the same for all of the views. However, the estimated
location would differ in each view due to image noise and cal-
ibration errors. Figure 20 shows the plots of the estimated X ,
Y , and Z coordinates of one of the checkerboard corners for
all the views. The maximum average absolute error in the es-
timated coordinates is 1�64 mm and the maximum variance of
the estimated coordinates is 4�69 mm2.
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Fig. 18. Generality of the proposed method. The image plane of the camera does not have to be parallel to the background, and
objects can have holes.

Fig. 19. Four out of 11 checkerboard images used for camera and hand–eye calibration.

Fig. 20. Location of one of the corners of the checkerboard in the world coordinate system for all 11 views.

5.2. Repeatability Analysis for Pose Estimation

In repeatability analysis, we fix the position of the robot arm
(and camera), repeat image capture, segmentation and pose
analysis for an object and locate the position of the pick point
in the world coordinate system. Ideally, the location of the pick
point should remain the same and the variance in the location
should be zero. However, note that even if the experiment is
run again from the same camera position, due to image noise
and hysteresis thresholds, the estimated depth edges will not be
exactly same. Thus, the goal is to measure the variance in the
location of pick point due to image noise and pose estimation
errors.

Figure 21 shows one of the images of brass hook from a
particular camera position. We repeat the pose estimation 20
times for this camera position. The pick point is set to the top
of the brass hook. Figure 21 shows the plots of the estimated

translation and rotation angles. Note that the estimated pose
is very close to the true pose. The maximum variance in the
estimated translation is 0�59 mm2 and in the estimated rotation
is 0�04�.

5.3. Pose Estimation Accuracy with Silhouette Size

The accuracy of the pose estimation also depends on the size
of the silhouette or the number of pixels in the object silhou-
ette. If the camera is too far from the object, the resolution
of the silhouettes will be low and the pose estimation could
have ambiguity between Z translation and out-of-plane rota-
tion. To evaluate this, we repeat the pose estimation by placing
the camera at different heights (Z-axis), while keeping the ob-
ject fixed. Figure 22 shows the plots of the estimated location

 at UNIV OF SOUTH FLORIDA on April 21, 2010 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


170 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February/March 2010

Fig. 21. Repeatability analysis for pose estimation: the pose of the brass hook as shown was estimated 20 times from the same
camera position. Shown are the plots for the estimated translation and rotation angles of the pick point. The true location and
pick angles was determined manually using teach-box to be X � 7�9 mm, Y � 612�62 mm, Z � 164�68 mm, � x � �180�,
� y � 0� and � z � 65�33�.

Fig. 22. Pose estimation accuracy with silhouette size: the pose of the object was estimated at nine different camera positions by
moving the robot arm from 225 mm to 400 mm (in the Z direction) in steps of 25 mm. The input images corresponding to the
first and last camera location shows the difference in the object size. The corresponding object silhouettes will also differ in size.
Note that as the camera moves up, the resolution of the silhouettes decreases and the Z estimate and out-of-plane rotation angles
(� X and �Y ) of the pick point worsens. The in-plane rotation and X–Y translation estimates are more robust to the silhouette size.
The maximum error in Y translation is only 3�5 mm, while the maximum error in Z translation is 26�1 mm.

of the pick point and the pick angles with respect to the chang-
ing distance of the camera from the object. Note that as the
camera moves up, the size of the object (and its silhouette) de-
creases. The estimates of in-plane rotation and X–Y translation
are more robust to silhouette size, compared with the estimates
of Z translation and out-of-plane rotation.

5.4. Pose Estimation Accuracy with Varying Camera
Position

Similar to the situation above, we estimated the accuracy and
success/failure rate of the system by capturing images from
different viewpoints over a sphere. We use 13 azimuth and
13 elevation angles leading to 169 camera viewpoints. Since
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the object is not moved, the variance of the estimated pose in
the world coordinate system should be zero. Out of 169 tri-
als, pose estimation failed in 17 trials leading to large errors
in pose estimation. For remaining 152 trials, the variance of
the estimate in location were less than 5 mm2. To calculate
the success/failure rate, we obtain ground truth location man-
ually using the teach-box. We declare a trial as a success if the
estimated location differs from the ground truth location less
than the tolerance provided by the gripper (4 mm). The esti-
mated success rate was 83%. Note that this could be improved
by combining information from multiple viewpoints for better
pose estimation.

5.5. Ambiguities in Pose Estimation

Since we only use the external object silhouettes, the coarse
pose estimation could have ambiguities if the external silhou-
ettes of the object are approximately same in different poses.
This is highly dependent on the shape of the object. To handle
such ambiguities, one needs to identify poses which can give
rise to similar silhouettes and test for all of them in fine pose
refinement. In some cases, we can identify a certain “axis”, ro-
tation along which could result in similar silhouettes. For the
brass hooks shown in Figure 1, such an axis connects the top
of the hook with the end of “V” shape bottom. A 180� rota-
tion along this axis could result in similar external silhouettes
as shown in Figure 23. Since the CAD model is known, we
pre-determine poses which could lead to ambiguity. If the es-
timated final pose is close to being ambiguous, we record the
error between the estimated and projected silhouettes (Equa-
tion (9)) and rotate the brass hook by 180� along this axis us-
ing the coarse pose estimate and repeat fine pose estimation.
The new error between the estimated and projected silhouettes
is compared with the previous error. If it has decreased, the
new pose estimate is used, else it is discarded. Extension 7
shows a video of fine pose refinement starting from an incor-
rect initial coarse pose, followed by the rotation of the CAD
model by 180� along the pre-defined axis and further fine pose
refinement to obtain the correct pose.

6. Discussions and Future Work

Several improvements can be made to our system. Our sys-
tem currently handles singulated objects. Stacked objects lead
to a more difficult segmentation problem but occlusions and
shadow information can be used (Koh et al. 2007) for 3D seg-
mentation of diffuse objects. Stacked specular objects, how-
ever, are more challenging as shadows are not cast on the spec-
ular surfaces properly, leading to a significant amount of miss-
ing depth and shadow edges. One possible solution could be to
combine segmentation and pose estimation instead of first do-
ing segmentation and then obtaining 3D pose from segmented
silhouettes.

Fig. 23. Ambiguities in pose estimation arise if the external
silhouettes are similar for different poses as shown above. The
coarse pose estimate followed by fine pose refinement results
in an incorrect pose as shown on the left. The object is rotated
along the pre-defined axis by 180� and fine pose refinement is
performed again to check whether it matches better, resulting
in the correct pose.

Our system runs in open loop and the estimated pose is used
to control the robot. Visual servoing and pose verification will
improve the robustness of the system. Currently we sample the
pose space uniformly, but for a given object certain poses are
more likely than others. Thus, adaptive pose sampling could
reduce the size of the database and reduce ambiguities in pose
estimation for symmetric objects. In addition, combining in-
formation from multiple views of the object could improve
pose estimation accuracy.

Our approach could also be combined with 3D sensors such
as stereo vision and laser triangulation systems that employ
a camera by augmenting the camera with LEDs around it to
build a hybrid sensor. This would complement our approach
which provides excellent depth discontinuities but not absolute
depths, with 3D sensors that provide absolute depths but often
have difficulty in estimating precise 3D geometry at depth dis-
continuities.

7. Conclusions

We have presented a vision-based robotic system for model-
based 3D pose estimation and picking of objects. Our system
utilizes a low-cost novel sensor consisting of a camera sur-
rounded by flashes. Cast shadows are used to estimate depth
edges (silhouettes) of objects, which are then used for seg-
mentation and 3D pose estimation using a CAD model of the
object. We show that instead of absolute 3D estimates, depth
discontinues are sufficient to precisely estimate the 3D pose
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of the object. Our approach outperforms similar vision sys-
tems based on 2D intensity-based features and 3D sensors
in terms of robustness, ability to handle objects of different
shapes/size and reflectance properties including specular, dif-
fuse and texture-less objects, as demonstrated by several real
examples using our sensor mounted on a robot arm. Our sys-
tem can also handle harsh environmental conditions such as
non-uniform backgrounds and complex ambient illumination.
Our technique is simple, low-cost, fast and generic enough to
accommodate variations in industrial automation applications.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Robot picking two brass hooks

2 Video Robot picking two specular pipes

3 Video Camera with Flashes

4 Video Fine pose refinement for brass hook

5 Video Fine pose refinement for specular
pipe

6 Video Camera viewpoint non-parallel to
background and object with holes

7 Video Correct pose recovery in case of am-
biguity
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