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HIGHLIGHTS

e The main contribution of our paper is a focused discussion on what a knowledge representation is as it pertains to the robotics field: a
comprehensive tool that encompasses high-level knowledge and low-level features.

e This paper aims to define and discuss knowledge representation for robots, to review the literature for existing solutions, and to identify possible
issues in the creation of an effective representation. We also review several tools and/or models that have been successfully applied to smaller
sub-problems in robot learning and manipulation, which can be used as components to knowledge representations.

e We discuss key characteristics of representations that allow them to function, in spite of the highly variable nature of a robot’s working environment
and the objects found within it. We also propose specific requirements that are necessary to build the ideal knowledge representation, drawing
on concepts discussed in previous works.
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Within the realm of service robotics, researchers have placed a great amount of effort into learning,
understanding, and representing motions as manipulations for task execution by robots. The task
of robot learning and problem-solving is very broad, as it integrates a variety of tasks such as
object detection, activity recognition, task/motion planning, localization, knowledge representation and
retrieval, and the intertwining of perception/vision and machine learning techniques. In this paper,
we solely focus on knowledge representations and notably how knowledge is typically gathered,
represented, and reproduced to solve problems as done by researchers in the past decades. In
accordance with the definition of knowledge representations, we discuss the key distinction between
such representations and useful learning models that have extensively been introduced and studied in
recent years, such as machine learning, deep learning, probabilistic modeling, and semantic graphical
structures. Along with an overview of such tools, we discuss the problems which have existed in robot
learning and how they have been built and used as solutions, technologies or developments (if any)
which have contributed to solving them. Finally, we discuss key principles that should be considered
when designing an effective knowledge representation.
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1. Introduction

A recent trend in robot learning research has emerged from
the motivation of using robots in human-centered environments
to develop domestic robots or robot assistants for use in homes
and to automate certain processes and tasks which may be incon-
venient for us as humans to perform. Assistants are particularly
beneficial for the care of the elderly or disabled who cannot
perform the actions themselves. In order to develop such robots,
researchers aim to create robots which can learn, understand, and
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execute tasks as human beings would. Individually, these are very
complicated tasks, as they all require an introspective approach
to understanding: (1) how we would perceive our environment
(objects, obstacles, and navigation), (2) how we execute actions,
(3) how these actions are best designed and implemented, (4)
how familiar we are to objects of various types and attributes,
and (5) how we ground understanding of the world. To achieve
these goals, an integrated solution is needed which allows us
to perform a variety of tasks such as object detection, activity
recognition, task/motion planning, localization, knowledge repre-
sentation and retrieval, and the intertwining of computer vision
and machine learning. Furthermore, aside from handling variabil-
ity, such a solution must ensure that robots avoid harming any
humans around them and that they maintain a safe environment
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kitchen(room) :-
contains(room, fridge),
contains(room, stove).

living_room(room) :-
contains(room, sofa).

bathroom(room) :-
contains(room, toilet),
contains(room, sink).

Fig. 1. Logical expressions as used in Al and certain robotics applications can be
written in different ways such as the Prolog logic programming language. Here,
we represent different predicates that a robot can use to determine whether
the room it is in is a kitchen, living room or bathroom based on what is found
within it.

through the understanding of the intentions of humans and the
effects of its own actions. In this paper, we pay special attention
to the way knowledge is represented for retention and re-use; a
knowledge representation can make it easier for a robot to perform
its duties and to function in its workspace safely.

1.1. Defining knowledge representation

As established before, several models or tools available at
the researcher’s disposal have been adopted for learning ma-
nipulations or activities to some regard for service or domestic
robots. Although this may be true, only a few actually make
the distinction of being a knowledge representation, and these
full-fledged representations cannot be considered equivalent to
stand-alone models, tools or classifiers. However, in our field of
robotics, there is a lack of a formal definition of what constitutes
a knowledge representation for a robotic system. Originally, this
concept was derived from the field of artificial intelligence (Al),
as representation of knowledge is very crucial to building an
artificially intelligent agent or system. As originally defined in
Al a knowledge representation is “concerned with how knowledge
can be represented symbolically and manipulated in an automated
way by reasoning programs” [1]. The emphasis in Al is heavily
placed on the semantic and symbolic representation of knowl-
edge grounded in formal logical expressions. Concepts about the
robot’s world, its actions, and the consequences of said actions
can be described using causal rules and predicates that are con-
nected to one another based on common entities or variables. By
identifying instances of such entities and variables, a robot can
make propositions to determine whether or not these expressions
are true or false through reasoning. An agent (such as a robot)
can use these expressions as their source of knowledge so long as
they can effectively acquire input and use reasoning to determine
the correct outcome. Typically, programmers can take advantage
of languages such as Lisp and Prolog to write relations (facts
or rules) as clauses that can be used in queries. Fig. 1 shows
an example of how logical expressions can be formulated in
the Prolog logic programming language. Within such knowledge
representations, rules or concepts that are built into the agent are
referred to as explicit knowledge, and this knowledge is used to
infer new concepts which were initially unknown to the agent as
implicit knowledge.

Ideally, a robot’s knowledge representation combines several
forms of knowledge with reasoning capabilities such that it can
devise the optimal plan of action for performing its duties. In
robotics, a knowledge representation extends beyond Al's logical
formalism of knowledge using only predicates to other compo-
nents that are important to a robotic system: perception modules

(audio, vision, or touch), sensor inputs, motion primitives and
actuation systems, motion and task planning systems, inference
systems, et cetera. As an extension to the definition in Al, we
define a knowledge representation for robotics as a means of
representing knowledge about a robot’s actions and environment, as
well as relating the semantics of these concepts to its own internal
components, for problem solving through reasoning and inference.
Here, high-level knowledge denotes a semantic, structural rep-
resentation of relations between different components, while
low-level representations on the other hand have no structure
nor symbols and instead relate to the robot’s control program or
physical system. For instance, we would typically describe objects
and locations using prepositions or very descriptive grammar,
which is unlike the low-level parameters used by robots such as
sensor readings, joint angles or points in space. Simply speaking,
a knowledge representation gives meaning to the inputs that a
robot acquires and uses in its tasks. For instance, a robot can
follow a certain trajectory or primitive to perform a task, but
high-level knowledge can be used to give meaning to it, such as
defining what the manipulation is or does. This problem relates
to the symbol grounding problem [2], which is concerned with
understanding how to intrinsically draw meaning (as high-level)
to symbols (as low-level) through experience and interaction
with the world; a knowledge representation for a robot or arti-
ficially intelligent agent has to answer the question of meaning
behind what it may see or do in its environment. This sym-
bol grounding problem states that we cannot merely associate
symbols to concepts or meaning without considering how these
connections are established by the intelligent agent. This along
with the problem of symbol grounding is covered extensively
in [3]. For human-like manipulations and task planning within
our homes and surroundings, if a robot were to communicate
with a human user and understand commands and relations as
dictated by a human person, then the knowledge representation
must have an ambivalent description of objects/tools and ma-
nipulations in high- and low-level representations. Furthermore,
a robot should also understand similarly to how we as humans
understand the world. With the inclusion of logical expressions,
knowledge representations still can benefit from the powerful
capability of inference and deduction as they were intended for
use in Al Several representations discussed in this paper, for
example, ground knowledge in Prolog to make querying relations
easier using its programming syntax.

1.2. Overview of paper

This paper aims to discuss the recent trend in knowledge
representation for robots, to identify issues in creating effective
representations, and to review several tools and models that
have been successfully applied to smaller sub-problems in robot
learning and manipulation to thus create representations. We
discuss key characteristics of representations that allow them to
function in spite of the highly variable nature of a robot’s working
environment and the objects found within it. The main contribu-
tion of our paper is a focused discussion on what a knowledge
representation is as it pertains to robotics: a comprehensive tool
that encompasses high-level knowledge and low-level features.
We also describe how models can be used to perform specific
tasks that are key to a robot’s function.

Our paper is outlined as follows:

e Firstly, we delve into a discussion on exemplary high-level
knowledge representations that are comprehensive and
complete to be called such in Section 2. Section 2 gives an
overview of those knowledge representations, with special
attention paid to cloud-based knowledge representations
and cognitive architectures.
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e Next, we examine numerous specialized knowledge repre-
sentations in Section 3. These models have been effective
in representing properties and concepts that are crucial to
activity understanding and task execution, despite that they
represent very specific concepts.

e In Section 4, we briefly talk about classifiers designed for
important tasks in robotics, despite not explicitly describing
rules and semantics for understanding.

e Finally, in Section 5, after reviewing several ways of rep-
resenting knowledge, we address key issues in develop-
ing knowledge representations. Specifically, we propose key
concerns that should be addressed to build an effective
representation while relating them to discussed works.

2. Comprehensive knowledge representations

In the ideal world, a domestic robot would be directed by
commands as input and it should plan its actions and execute
a series of tasks to produce a required outcome. To do this,
the robot should be equipped with the knowledge it needs to
perform all the steps, from receiving its instructions to identifying
a motion plan to executing all required manipulations using what
is available in its environment. We first begin our discussion
on knowledge representations by introducing examples of those
that have been introduced by researchers within recent years.
These representations should contain an abstraction of low-level
features (features that can be acquired by a robotic system) with
high-level knowledge that can be interpreted by humans. Knowl-
edge can be constrained to a set of terms or language known as
an ontology. The purpose of an ontology is to define a scope of
concepts and terms used to label and describe the working space
of the robot in a format which is also understood by humans.

In this section, we will discuss different approaches to map-
ping a higher level of knowledge to a robot’s understanding
of the world to perform tasks. These representations combine
several kinds of information. In addition, we discuss larger com-
prehensive projects that emphasize collaboration and knowledge
sharing among a group of robotic systems. These representations
are self-contained systems which combine multiple modalities of
information such as vision, touch and sound, or they can draw
information from several data sets all combine and contribute
modality information. A good overview of data sets that offer
several modalities of information to researchers related to object
manipulation can be found in [4]. This would imply that robots
should maintain a constant connection to access past experiences
of robots as well as to upload their current and future experiences
to build upon that informational source. Other systems in this
section also automatically gather data from across the Web.

2.1. High-level representations of tasks

A knowledge representation innately represents skills or ac-
tions in an ontology, emphasizing reliability, safety and usability
for and by robots. In order for the robot to perform effectively,
a knowledge representation should contain concepts or rules
based on different modalities of data, it should allow for ex-
pansion or learning new concepts, it should be used to reason
logically and statistically, and that it appropriately defines ob-
jects, actions/skills, and states needed for manipulations. As we
will address in more detail in Section 5, a knowledge represen-
tation should encompass all of these ideas so that a robot can
reason as well as perform skills on its own. When representing
skills, it is not only important to consider motion-related details
such as trajectories, but we should also consider the semantic
meaning behind the skills (i.e. what exactly is the motion, what
changes or consequences do its actions cause on the robot’s
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Fig. 2. Illustration of the pipeline for manipulation action tree banks, as
originally presented in [10]. The action tree bank comprises of knowledge from
demonstrations, and this knowledge base is searched for a tree which a robot
can use for manipulation execution.

environment, etc.). Many researchers do not consider the repre-
sentation of states within their work [5], which is important for
recognizing when an action is complete. We pay particular atten-
tion to knowledge representations that ground tasks as high-level
knowledge through the integration of different structures and
models.

We discuss our first example of a high-level knowledge rep-
resentation, which was originally proposed by Ramirez-Amaro
et al. [6-8]. These researchers used learning by demonstration to
teach robots about manipulations obtained directly from demon-
strations, and they describe it as a transfer of skills from the
demonstrator to the robot; upon observation of a demonstration
of a skill, the robot then imitates the action performed by a
human demonstrator. This sense of “transfer learning” however
is different to the traditional sense within the machine learning
community [9]. They can create semantic graphs as trees with
knowledge in the form of transferable skills needed to execute
three challenging kitchen tasks. This knowledge is directly ex-
tracted from human demonstrators and it allows the robot to
perform the exact methods needed to imitate the demonstrator in
manipulating objects. Human activities are learned based on sev-
eral attributes: (1) the motion made by the hand, (2) the object(s)
being moved and manipulated by the hand, and (3) the object(s)
which these held items are being used and acted on, and they
are presented as ordered pairs to train their inference engine.
Once obtained, these semantic rules, grounded in Prolog, can be
used in reasoning and future understanding of demonstrations
through inference; these properties were applied to a decision
tree classifier to automatically gain knowledge and rules from
new demonstrations.

Another exemplary study in representing skills from demon-
strations was presented by Yang et al. In [11], the researchers
presented a method for representing observed manipulations in
the form of combinatory categorial grammar (CCG) using rules
originally described in [12]. This grammar vividly describes a
specific action, the items being used, as well as the consequence
of performing such an action [13], and each action can also be ef-
fectively broken down into smaller sub-actions or sub-activities.
Using said context-free grammars, they also developed manip-
ulation action tree banks [10] to represent action sequences as
tree data structures that can be executed by a robot. Equipped
with action tree banks, a robot can use the knowledge gathered
from multiple demonstrations to determine the actions it needs
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Fig. 3. Illustration of a universal FOON as a result of combining knowledge
by merging subgraphs from 65 videos. Three examples of functional units are
shown, each describing an atomic manipulation.

to take, in the form of a tree, for a given manipulation problem
(illustrated in Fig. 2).

Similar to the prior representation, our group also introduced
a semantic knowledge representation called the functional object-
oriented network [14-16] (FOON) which serves as a basis for both
learning and representing manipulation knowledge for domes-
tic tasks. The bipartite FOON structure, akin to Petri Nets [17],
contains object and motion nodes to capture the concept of
object affordances. Affordances (based on J. J. Gibson’s theory
of affordance [18]) are described by edges drawn between an
object and a motion/action type. This network combines input
object nodes, output object nodes and a motion node to create
what we refer to as functional units (shown in Fig. 3). Individu-
ally, a functional unit describes a singular or atomic action that
results in an object’s change of state before and after a motion
is executed upon them (so as to emphasize state change as an
indicator of the end of an action [5]); collectively, these units
describe an entire activity as a subgraph. Typically, a universal
FOON will comprise of many functional units (shown in Fig. 3)
obtained from annotating several instructional videos. Through
task tree retrieval (based on graph searching concepts), a robot
can find a task tree which contains a sequence of steps that
achieve a given goal. This is done by identifying a target node and
backtracking to find steps whose requirements we satisfy (i.e. we
have all the objects needed to perform actions), much like the
“firing” of transitions in Petri Nets. For visualizations of annotated
subgraphs, we refer readers to our website.! To create new FOON
subgraphs, in [16], we proposed a pipeline to annotate videos
using a universal FOON. This deep learning pipeline is capable
of suggesting objects and motions as functional units that match
activities as seen in new video demonstrations. The annotations
that may be obtained from this process can be merged with our
current network to add new knowledge semi-automatically.

1 FOON Website — http://www.foonets.com.

2.2. Cognitive architectures

A cognitive architecture is a model that attempts to explain
the psychological theories behind human cognition and the pro-
cesses, mechanisms and modules that are pivotal to cognition
and behavior. Many architectures have been proposed and ex-
tensively studied based on different cognitive theories, includ-
ing the likes of ACT-R [19], Soar [20,21], CLARION [22], and
EPIC [23]. Every architecture differs from one another in how
knowledge is acquired, represented, retained (through long- and
short-term memories), and transmitted within its internal cogni-
tive structures since they all follow their own respective theories
of human cognition; despite their differences, however, they all
aim to answer the question of how human cognition works.
Much like knowledge representations for robots, cognitive ar-
chitectures modularize different components that are central to
thoughts, perception, inference, and action and have them con-
nected with one another based on cognitive theories. For an
extensive overview of such architectures, we encourage readers
who are interested in learning more about them to refer to a
review done by Kotseruba and Tsotsos [24]. Within robotics,
cognitive architectures are extensively studied in the field of
developmental robotics as a means of understanding how we
develop sensory and motor skills as an infant. Such studies look at
how each internal component is connected with one another so
that a robot can develop new skills and acquire knowledge about
its problem domain. Readers can learn more about developmental
robotics through [25-27].

Typically, cognitive architectures emphasize on how knowl-
edge is retained and used as either long- or short-term mem-
ory, where long-term memory can refer to concepts (goals or
descriptions of an entity’s environment), while short-term mem-
ory refers to instances of such concepts. Each of these concepts
and skills are learned, retained, and activated once their ar-
guments have been fulfilled by identifying them through the
robot’s perception system. Architectures such as Soar [28] and
ICARUS [29-31] have been used to illustrate how skills and con-
cepts are learned from navigating throughout its environment
or through human interaction. They can learn concepts such as
object instance identification and location. These skills (i.e. its
abilities to manipulate objects) are learned as long-term com-
ponents which can be used in conjunction with other skills for
performing tasks on the robot’s environment. Through a devel-
opmental approach, works such as [32-36] investigate how skills
are developed through human-robot interaction (HRI). In such
studies, a human assistant would interact with robots to teach
them about the relationships between its actions, effects, and its
own internal representation of the world. For example, in Ivaldi
et al. [34], a robot was taught about object affordance through the
assistance of a caregiver who supervises the robot’s actions much
like a parent would. The caregiver can give the robot different
commands such as looking, grasping, pushing or more complex
actions like placing objects on top of another. Through HRI, the
robot learns how to identify novel objects by showing the robot
what the items of focus are without any prior knowledge of
what they look like. Once the robot has the knowledge of those
objects, the robot can proceed to learn about actions and the
action’s effects while gaining positive or negative feedback to
indicate whether the robot performed the task correctly or not.
In summary, cognitive architectures not only aim to equip robots
with the necessary knowledge to perform its duties, but they
ultimately aim to explore how our cognition as humans work.
Retaining a memory of experiences is crucial to learn semantic
and symbolic concepts and to reason for solving problems.
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Fig. 4. Illustration of the pipeline for RoboEarth [43,44]. As taken from http:
//www.i6.in.tum.de/Main/ResearchRoboEarth/.

2.3. Distributive and collaborative representations

There is major potential to improve a service robot’s perfor-
mance using cloud computing [37-39]. Thanks to cloud com-
puting and powerful hardware, it has become easier for us to
perform high-intensive processing tasks with parallel program-
ming and distributed systems. A good overview of cloud robotics
and relevant technologies can be found at [39]. Robots can take
advantage of off-board computations to allow for longer usage of
simpler robotic systems and to reduce their computing power,
thus maximizing the overall performance of robots. Furthermore,
certain initiatives such as the Million Object Challenge [40,41]
show that we make it easier to learn certain tasks in parallel
with many robots performing tasks at once. Highlighted as an im-
portant, emerging technology [42], the Million Object Challenge?
involves learning how to grasp using Baxter robots working in a
distributed manner. in [41], robots can learn how to grasp using a
simple monocular lens camera; using such a basic vision system
can be applied to other systems to simplify grasping by using
more widely accessible and less complicated technologies. These
projects aim to learn how to grasp objects of different shapes and
sizes by tasking a group of robots to repeatedly try to pick up a
set of objects until they have successfully grasped and placed it
in another container. The important thing to note here is that the
distribution of tasks can greatly benefit robot learning.

When it comes to comprehensive knowledge representations
that are based over the cloud, prominent examples include
RoboEarth and RoboBrain. RoboEarth [43,44], referred to as the
“World Wide Web for robots”, is an ongoing collaborative project
aiming to create a cloud-based database for robots to access
knowledge needed to solve a task. RoboEarth was first pro-
posed as a proof-of-concept to show that cloud robotics would
greatly simplify robot learning. RoboEarth provides an ontology
for storage of semantic concepts and a method for accessing
knowledge through a software as a service (SaaS) interface, where
computational inferences and mappings can be done remotely.

2 Million
challenge/.

Object Challenge —  http://h2r.cs.brown.edu/million-object-

As a collaborative system, RoboEarth allows robots to archive its
own experiences (such as object types observed, motion plans
successfully or unsuccessfully used, robot architectures, etc.) for
recall and reuse by other capable robots. This database would
contain massive amounts of data (in the form of object models,
SLAM maps [47], semantic maps, etc.) which can be used for
tasks such as object recognition, instance segmentation and path-
planning. An illustration of the RoboEarth pipeline is shown
as Fig. 5. Related to RoboEarth is another promising project
headed by Rapyuta Robotics,> a company which now deals with
cloud robotics solutions. Rapyuta Robotic’s system called Rapyuta,
named after the movie from Japan’s Studio Ghibli, was first
introduced in [48] and then in [49] as a platform as a service
(PaaS) interface for robots. It acts as an open-source middleware
for accessing resources from the web such as the aforementioned
RoboEarth repository and ROS (Robot Operating System) pack-
ages. Additionally, it reduces the processing done by the robot by
offloading computations to the Cloud. Robots can also communi-
cate and share information with one another through this PaaS
system. This project has since evolved into the development of
their cloud robotics platform for corporate solutions.

Results from RoboEarth led into the development of ope-
nEASE,* also by Beetz et al. [50] (EASE being an abbreviation for
Everyday Activity Science and Engineering). builds upon RoboEarth
as a web-based interface and processing service that equips
robots with knowledge from prior experiences (similar to access-
ing memory) and reasoning capabilities in the form of seman-
tically labeled activity data. A robot using openEASE will have
access to: (1) knowledge about a robots hardware, its capabilities,
its environment and objects it can manipulate, (2) memorized
experiences which a robot can use for reasoning (why it did
an action, how it did it, and what effects the action caused),
(3) annotated knowledge obtained from human demonstrations.
Queries and statements are formulated using ProLog, which can
be sent through a web-based graphical interface or through a
web API usable by robots; they allow robots to acquire semantic
information and meaning to sensor input and to data struc-
tures used for control purposes. As a component to this project,
Tenorth et al. [45,51,52] presented KnowRob (illustrated in Fig. 4)
as a knowledge processing system for querying the openEASE
knowledge base using Prolog predicates. KnowRob combines
various sources of knowledge such as web pages (methods from
instructional websites, images of usable objects, etc.), natural
language tasks, and human observations. A robot can ground
the knowledge from KnowRob to a robot’s perception/action
system and its internal data structures through a symbolic layer
referred to as “virtual knowledge bases”. Through ProbCog [53], a
statistical relational learning and reasoning system, models such
as Bayesian Logic Networks [54] or Markov Logic Networks can
be built for representing the state of the robot’s current context.
KnowRob is built within another tool known as CRAM (short for
Cognitive Robot Abstract Machine) [55,56], a software toolbox for
the design, implementation and deployment of robots using its
own CRAM Plan Language (CPL). CPL is inspired by Common Lisp
and Prolog for the expressive specification of concurrent, sensor-
guided reactive behavior, or in simpler terms, how a robot should
react to certain sensory events or changes in belief state.

Another noteworthy technology that deals with knowledge
gathering and sharing is RoboBrain®; Saxena et al. [57] intro-
duced RoboBrain in 2014 as a means of massively collecting
concepts which are learned from automatic gathering of data

3 Rapyuta Robotics — https://www.rapyuta-robotics.com/.
4 OpenEASE — http://www.open-ease.org/.
5 RoboBrain — http://robobrain.me.
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from the Internet, simulations, and robot experiments. This dif-
fers to the RoboEarth/openEASE representation in the fact that
RoboBrain uses graphs for encoding knowledge, while RoboEarth
and its internal components use propositional logic and state-
ments for defining concepts and relations in a working space.
The information is represented as a graph, where nodes represent
concepts (such as images, text, videos, haptics data, affordances,
deeply-learned features, etc.) and edges represent the relation-
ships between such concepts. RoboBrain connects knowledge
from popular sources such as WordNet [58], Wikipedia, Freebase,
and ImageNet [59]. They manage errors in knowledge collection
using crowd-sourcing feedback as well as beliefs that reflect the
trust given to certain knowledge sources and the correctness of
concepts and their relations. To retrieve knowledge, the Robot
Query Language (RQL) can be used for obtaining a subgraph
describing the activity of executing a certain task. Unlike the
case with openEASE, it was not demonstrated how a robot can
execute the method reflected by a subgraph; however, the knowl-
edge gathered nevertheless can be quite useful for task planning,
instance identification, and inference (see Fig. 6).

2.3.1. Remarks on cloud-based systems

To conclude, we have covered several knowledge representa-
tions that take different approaches to obtaining and retaining
knowledge for robotics. Although they all have their differences,
the common goal is to develop a representation that is not spe-
cific to a single robot. In fact, there are several ongoing projects
whose aim is to take advantage of cloud computing platforms and
technologies, and the abstraction of knowledge would therefore
be essential. Using distributed resources will also facilitate easier
programming of robots through experience sharing and com-
munication protocols that allow robots to work collaboratively.
However, the challenge lies in developing a generalized platform
that can be used by different robots; since these robots are being
built by a variety of companies and groups, it is up to them
to foster seamless integration with these cloud services. Close
communication among researchers is crucial to ensure that re-
search challenges are solved. Additionally, defining and adopting
universal standards or protocols would be key for the success of
comprehensive and distributed representations.

3. Specific knowledge representations

In contrast to full-fledged knowledge representations, there
are other tools that can be useful to a robot in its execution
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Fig. 6. An illustration of how RoboBrain can be used by a robot for solving
problems as originally shown in [57].

of human-like manipulations and activities. To create the ideal
knowledge representation, such a representation must be com-
prehensive enough to tie high-level knowledge to low-level fea-
tures/attributes; these models can be put together to integrate
their strengths and to create a representation suitable for ser-
vice robotics. Researchers have extensively studied several types
of models that can be used for representing different types of
knowledge. Such types of knowledge are not limited to visual
cues for grasp points or activity recognition, object-action—effect
relationships to relate objects to their uses, object detectors and
instance classifiers, motion identifiers, and object-object relation-
ships. The papers selected in this section consider these kinds of
relationships when building their models.

3.1. Probabilistic graphical models

In this section, we focus on learning approaches that use
probabilistic models as their base of knowledge, which assume
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Fig. 7. A simple example of a Bayesian network.

that a robot’s world and the actions it can possibly execute are not
discrete but indeterminate by nature. In other words, the robot’s
world is governed by likelihoods and uncertainty, and these like-
lihoods are captured as probabilities grounded in such models.
These models therefore can be used for representing knowledge
needed by robots when it comes to recognizing activities through
a basal understanding of the effects of its own actions on its
environment. Although these models are examples of machine
learning algorithms, they are fit to learn high-level concepts and
rules for inference; other machine learning techniques that do not
focus on these high-level rules would be considered as implicit
representations of those rules, which will be covered in Section 4.
We first begin by covering the different types of models used
in recent works, and then we explore how these models can be
applied to learning and representing activities and actions. We
recommend that readers refer to works by Koller et al. [60,61]
for further reading on the theory of these probabilistic models.

3.1.1. Bayesian networks

Bayesian Networks (BN) are directed, acyclic graphical models
whose nodes can represent entities or concepts and edges denote
probabilistic dependencies between such nodes and, furthermore,
a flow of influence that may be incidental between them. Each
node in the network represents a conditional probability distribu-
tion, where probabilities are grounded by Bayes’ Rule. If we have
an unknown variable, given that we know the other variables, we
can use this equation to find the unknown probability or variable.
These variables are usually discrete and reflect observed phenom-
ena within a setting or environment when applied to robotics;
nodes are typically used to represent observable variables for
properties or objects. In simple terms, once there is an instance
of a path between one variable to another, we can then say that
there is a flow of influence since one node is dependent to the
other; however, if there is no path connecting two nodes, such as
the nodes labeled 1 and 6 or 2 and 4 in Fig. 7, then we can say that
these nodes are independent. In mathematical notation, given
that these node variables are N; and N, with no parents (hence,
we say @), this is written as: (N; L N;)|@. More accurately,
this independence is best regarded as conditional independence.
Conditional independence assumes that two or more nodes fol-
low a local Markov assumption, where a variable is said to be
conditionally independent from nodes which are not its children
given its parent node. The presence of edges between a pair of
variables indicate a flow of independence, while the absence of
edges between a similar pair of variables indicate that they are
completely independent. It is because of this flow of influence
that BNs are well-suited for inference about unobserved variables
given those which we may have observed.

3.1.2. Markov networks

Bayesian Networks differ to another category of graphical
methods referred to as Markov Random Fields (MRF) or Markov
Networks (MN) with the stark difference in the graph’s edges:
there are no directed edges present in these structures. Since

Clique 1

2

-

\"Clique 2 7

Fig. 8. A simple example of a Markov network. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

a)

b)

Fig. 9. An example of conditional random fields. The CRF labeled (a) and (b)
differ in terms of the states’ dependencies on the observed variables. CRF (a)
illustrates a model which uses several measurements for predicting a given state
(which may be used for recognition), while CRF (b) shows a simpler model which
would only use the observation at a time t to predict a state at time t.

there is no directional flow of influence, a MN can adequately
capture cyclic dependencies. This means that there is an equal
flow of influence by the pair of connected nodes. As with BNs,
we can also apply the local Markov assumption to denote con-
ditional independence. However, each variable in a MRF do not
necessarily follow probability distributions. Instead, we param-
eterize a Markov Network using factors, which are functions
representing the relationship for each clique (i.e. a subset of nodes
in which all nodes are connected to one another — such as
sets {2, 3,5} and {5, 7, 8} in Fig. 8 represented by red and blue
dashes in the graph respectively. These factors, when combined
together, can represent the entire state of the graph and make
up a distribution. These models can be used for representing the
phenomenon reflected by given data just as with their directed
variants, especially for representing transitions of states which
are not necessarily irreversible.

A Markov Network can be specialized further for specific pur-
poses and functions. Conditional random fields (CRF) [62], another
instance of a Markovian model, are a special instance of MNs that
encode conditional distributions (shown in Fig. 9). Given a set of
observed variables X (representing data or measurements) and
target variables Y (representing states), a CRF models a distribu-
tion based on X, i.e. P(Y|X). The definition of the distribution for
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Human(H)

Fig. 10. An example of a Markov Logic Network. This MLN represents the first-
order logic statement that a human H can own a pet D (or more formally, VH, D :
Owns(H, D) — Human(H) <—> Pet(D)). For example, if we have instances of a
human “Ryan” who owns a dog “Wilfred”, then this would follow this logical
statement where Owns(Ryan, Wilfred), Human(Ryan) and Pet(Wilfred).

a CRF would not solely consider factors (or cliques) with those
observable variables (i.e. a given C; must not comprise of only
variables in X). CRFs are typically used for modeling predictions
of sequential data, where the observable variables represent con-
cepts that are used for predicting a certain outcome as target
variables. A Markov Logic Network (MLN) [63] uses the structure
of Markov models combined with first-order logical statements
or predicates, which describe the state of the world and those
of objects and entities that are present within it. These logical
statements consist of four parts: constants, variables, functions,
and predicates. Each node is labeled with first-order logical state-
ments to describe a probabilistic scenario, and they are assigned
weights which reflect the likelihood of them being active. A very
simple example of a MLN based on a single first-order logic
statement is shown in Fig. 10. This differs from the regular usage
of first-order statements: if a statement or condition is not true,
then in the MLN, it means that it has a low probability of being
true in that situation instead of being assigned zero probability.

3.1.3. Applications of probabilistic models

In this section, we discuss how these probabilistic models
have been used for learning about activities and manipulations.
Bayesian Networks in research studies are mainly used for captur-
ing the effects of actions upon objects in a robot’s environment.
When capturing such effects, a robot would be presented with
demonstrations of observable action and effect pairs in order
to learn the relationships between them. These relationships
can be taught through learning by demonstration, and it can
be classified into two subcategories: trajectory-level learning and
symbolic-level learning [64]. Trajectory-level learning is a low-
level representation approach which aims to generalize motions
on the level of trajectories and to encode motions in joint, torque
or task space, while symbolic-level learning looks at a high-level
representation which focuses on the meaning behind skills in
activity learning. The robot’s interaction with its environment
serves to either learn new motor primitives or skills (trajectory-
level) or to learn new properties associated with the type of
grasp they make or the skills they use, the object’s physical
features, and the effects that occur from executing an action
(symbolic-level). In works such as [65-70], a robot can use basic,
pre-programmed motor skills (viz. grasping, tapping or touching)
to learn about relationships between an object’s features (such
as shapes, sizes or textures) and features of its actions (such as
velocities and point-of-contact). The controllers of these skills are
tuned by the robot’s experiences and exploration with its envi-
ronment, and the causality of these actions and their effects upon
the world, based on object features, can be represented through
a BN. The robot can use the knowledge it has gathered from
interacting with objects and performing fine-tuning to select the
appropriate action that achieves a human demonstrator’s result.
Similarly, Jain et al. [54] and Stoytchev et al. [71,72] used these
networks to learn about the effects of actions on objects based

Fig. 11. Illustration of a factorial CRF as used in Kjellstrom et al. [75] to predict
actions a and objects o based on observed features x* and x° (for both action
and object) at some given time t.

on demonstrations with tools. Their BNs were built based on
geometric features relevant to a tool’s function (and tools similar
to it), which they coined as functional features, for predicting the
effects of tools unknown to the robot with the learned model.
For instance, objects used for cutting have a sharp edge as a
functional feature, and those used as containers have a non-
convex shape for holding matter or substances; once the robot
can identify these features, it can use the trained model to predict
the results of specific actions. The tools’ effects are given by
the target object’s displacement, the initial position of the tool
relative to the target object, and the target velocity after impact
was made on the tool’s functional feature. A BN can also be used
with other modalities of data such as speech input for grounding
actions to their effects [73]. Instead of learning object-action
effects, BNs can also describe the likelihoods of object-object
interaction between specific pairs of objects as learned from
observing human behavior [74]. These affordance models are
particularly useful in improving both activity recognition and
object classification and teaching robots to perform tasks using
paired objects.

With regard to Markov Networks, instead of a cause-effect
relationship as inherently represented in Bayesian Networks, re-
searchers can focus on learning dependencies between concepts
useful for learning from demonstrations and identifying future
cases of actions or activities, which can particularly be useful
for a robot in learning new concepts or safely coordinating with
others working in the scene. As an example of activity recognition
with MNs, Kjellstrom et al. [75,76] used CRFs to perform both
object classification and action recognition for hand manipula-
tions. Their reasoning behind the simultaneous classification of
both objects and manipulations comes from: (1) the sequence
of an object’s viewpoints and occlusion from the hand indicate
the type of action taking place, and (2) the object’s features
suggest the way the hand will be shaped to grasp it. They use
factorial conditional random fields (FCRF) [77] to map this two-
way relationship between object features and possible action
types (shown in Fig. 11). FCRFs have the advantage of mapping
the relationship between the data level (features found in obser-
vations) and the label level (object types and properties and their
relatedness with actions), thus effectively capturing affordances
suggested by the hands and objects. A similar approach is taken
in [78] to identify activities based on objects and their proximity
to hands in a scene using CRFs. Prior to this work, in [79], this
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association was described using text descriptions, which they
denote as functional object string descriptors, which significantly
perform better than using purely appearance-based descriptors
for recognizing similar events or activities. Using CRFs to repre-
sent the spatio-temporal relationship between objects, denoted
by functional classes, improved over their previous approach of
performing activity recognition with string kernels.

Another example of spatio-temporal representation of activi-
ties to objects was done by Koppula et al. [80], who used MRFs to
describe the relationships present in the scene between activities
and objects. By segmenting the video to the point of obtaining
sub-activity events, they can extract a MRF with nodes represent-
ing objects and the sub-activities they are observed in and edges
representing: (1) affordance-sub-activity relations (i.e. where the
object’s affordance depends on the sub-activity it is involved
in), (2) affordance-affordance relation (i.e. where one can infer
the affordance(s) of a single object based on the affordances of
objects around them), (3) sub-activity change over time (i.e. the
flow of sub-activities which make up a single activity), and (4)
affordance change over time (i.e. object affordances can change
in time depending on the sub-activities they are involved in).
They proposed using this model for the purpose of recognizing
full-body activities occurring in videos collected for their Cornell
Activity Dataset® (CDA). Following [80], they investigated how
they can anticipate or predict human behavior using CRFs to
ensure that a robot reacts safely in [81]. A special CRF, called
the anticipatory temporal CRF (ATCRF), can be built after iden-
tifying object affordance for a particular action type and can
effectively describe all possible trajectories of human motion and
sub-activities that are likely to be taken as time goes by.

Using first-order logic statements are effective for reasoning
and inference; taking advantage of such logical expressions, a
MLN effectively represents a systematic encoding of the robot’s
world. A MLN can be thought of as a knowledge base, as these
logical statements can be used for reasoning and drawing conclu-
sions based on what a robot sees and observes. For instance, with
regards to activity recognition using affordance, Zhu et al. [82]
used a knowledge base, in the form of a Markov Logic Network,
for inferring object affordances in activities which are suggested
by the pose of the human demonstrator in videos. They can do
the inverse by predicting the objects and actions occurring in
a given scene based on the pose of the human demonstrators
with relatively great performance. This could only be done after
they collected a large amount of information about these usable
objects and affordances as features, but there is no need for
training multiple classifiers for each object-based task to identify
each type of detectable activities as typically done with other
machine learning approaches. A MLN such as theirs can be used
alongside other components for activity recognition to predict
human intention and to enforce safe behavior within a human-
robot collaborative environment. KnowLang [83,84], proposed by
Vassev et al. is a knowledge representation that was developed
for cognitive robots where the power of Al's logical expressions of
the world with what they actually perceive in their world. It also
combines first-order logic with probabilistic methods which they
can use for defining explicit knowledge for the robot. However,
when making certain decisions in which lies uncertainty, statis-
tical reasoning through the use of Bayesian Networks makes the
process more reliable through reasoning on beliefs. Experiences
can be reflected through probabilities, and such distributions are
likely to change based on what the robot sees or acts.

3.2. Semantic graphs

Graphs are very popular for representing information quite
simply because we can display knowledge in a graphical form

6 Cornell Activity Dataset — http://pr.cs.cornell.edu/humanactivities/.

inside of "

Fig. 12. Illustration of semantic understanding of a certain scenario. In this case,
we are creating a semantic graph whose nodes and edges describe the objects
in the scene and their relative positions.

that can be interpreted and verified visually by humans. As pre-
viously discussed, probabilistic models can also be represented
graphically and make excellent inference tools. With probabilis-
tic graphical models, edges would describe the likelihoods of
certain variables as nodes causing others to occur. However, in
this section, we will be referring to another subset of graphs
referred to as semantic graphs, whose nodes and edges describe
semantic concepts and details between entities as observed in
demonstrations. Spatial concepts, for instance, can be described
by semantic graphs, where nodes can describe objects within a
scene, and edges describe commonality or contextual relation-
ships between objects in terms of position (one object may hold
another object, one object may be on top of another object, et
cetera); such an example is shown as Fig. 12. Some graphs also
embody temporal relations, where two or more particular events
are related by time (e.g. one event must occur before another).
Basically, these networks can be used for compressing details and
capturing relationships as needed by a robot.

3.2.1. Activity recognition & inference with graphs

One of the major problems in robot learning has been in learn-
ing to recognize activities to facilitate the transfer of knowledge
to robotic systems. A major component of activity recognition
and understanding is predicting an ongoing activity or action as
seen in a video demonstration. Knowledge extraction is mainly
done through the processing of activity-based videos and images
or through interpreting sensor data from demonstrations either
done by the robot or human demonstrators. Techniques such as
optical flow can also be used for identifying motion patterns to
then recognize motion types or primitives. These elements can
be used as context clues for inference. Previous work focused
on understanding the activity taking place with the use of the
primary portion of such videos to recognize the likely activity
and results which would be implied by it [85-87], especially for
predicting the next action which would take place in a sequence
of actions [88]. Semantic graphs have been used for representing
affordances based on how objects are used with one another
based on visual cues and spatio-temporal relatedness.

Segmentation techniques can be applied to images to iden-
tify the objects being used in demonstrations. These segmented
“patches” can be used for labeling nodes in semantic graphs
(such as in Fig. 12). For example, Aksoy et al. [89,90] created
these semantic graphs after segmentation. Their focus was in
understanding the relationship between objects and hands in the
environment and generalizing graphs for representing activities
and identifying future instances of these events. This approach
can be classified as unsupervised learning since there is no ex-
plicit indication of what the objects are; objects instead are solely
encoded based on manipulations in matrices, which they refer
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to as semantic event chains (SEC). These structures capture the
transitions in segment relations (temporal information), which
are then generalized by removing any redundancies in activities,
to be used in recognizing similar events. They characterized spa-
tial relations of objects as non-touching, overlapping, touching,
or absent within each matrix entry and as edges which connect
image segments. Sridhar et al. [91] also used segmentation to
separate the scene into “blobs” (similar to the patches in [89,90]
and cluster them as a semantic graph, based on the objects’
usage in videos, for affordance detection. Their semantic graphs
are called activity graphs, structures which describe the spatial
(whether objects are disconnected, found in the surrounding area,
or touching) and temporal (relativity with respect to episodic
events) relationships in a single video. With such graphs, sim-
ilarity between activities can be measured even with varying
object instances, orientations, hand positions, and trajectories.
Zhu et al. [92] focused on segmenting the tool and the object it is
being used on to create a spatial-temporal parse graph. Within
these graphs, they capture the pose taken by a demonstrator,
the observed grasping point of the tool, the functional area of
the tool that affords an action, the trajectory of motion, and the
physical properties (such as force, pressure or speed) that govern
the action. These graphs can then be used to infer how objects
can be used based on prior demonstrations.

3.2.2. Representing sequences of skills or events for tasks

Semantic graphs may also been used for task execution in the
form of skills, containing knowledge that can be used by robots
for manipulations. In these structures, nodes represent objects
and action types. Several researchers have taken approaches to
learning object affordance and representing them in this manner.
As discussed before, notable examples of such graphs include [7,8,
14,15], the latter being inspired by Petri Networks (or simply Petri
Nets) [17]. Petri Nets were originally intended for illustrating
chemical reactions, and they have been shown to be applicable
to other domains such as robotics and assembly. Petri Nets are
networks with two types of nodes: place nodes and transition
nodes. Place nodes represent states of objects or entities, and
transition nodes represent events or actions which cause a change
in state. The term for state change with respect to Petri Nets is
firing of transitions. Typically, all place nodes must be present
for transitions to fire, therefore enforcing an implicit ordering
of actions and behaviors. Costelha et al. [93,94] used Petri Nets
for representing robot tasks over other methods such as Finite
State Automata (FSA) which require more memory and a larger
space of representation and its limitation to single-robot systems.
Petri Nets, on the other hand, can represent concurrent system
actions and sharing of resources. The implicit ordering of events
allows them to filter out specific plans which can never happen
or those which should be avoided. They created Petri Net Plans
(PNP), which are essentially a combination of ordinary actions
and sensing actions using control operators.

Similar to context-free grammars are object-action complexes
(OAC, pronounced like “oak”) [95-98]. This representation’s pur-
pose is to capture changes in state of the environment in a
formal structure which can be used for task execution. OACs
combine high-level planning and representation of the world
with low-level robot control mechanisms called instantiated state
transition fragment (ISTF). An ISTF can be seen as minute, lower-
level constructs, which can be put together like context-free
grammars, for a concrete understanding of an action’s effects be-
fore and after a motor program (i.e. action) is executed; OACs can
be created after learning a variety of ISTFs. ISTFs are generalized
to only contain the object-state changes which are relevant to an
action tuple (identified through methods described in [99]), as
ISTFs can contain object-states which may or may not be affected
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Fig. 13. Illustration of various properties captured in the semantic object map
(SOM) representation as presented in [101,102]. SOM ties geometric data to
semantic data that can be used in reasoning.

or caused by a specific action. Given a set of object affordances
and relations learned, an associative network can be used for
encoding and retrieving the state change that will occur from a
certain OAC permutation.

Other approaches so far have attempted to map high-level
manipulation skills to graphical structures. Instead of focusing on
manipulations, Konidaris et al. [ 100] chose a different representa-
tion for trajectories as skills. These researchers introduced an al-
gorithm for learning skills from demonstrations, focusing primar-
ily on motion trajectories from tasks, called CST (for Constructing
Skill Trees). Motion trajectories can be broken down using change-
point detection, and these smaller trajectory components are
referred to as skills. The aim of change-point detection is to find
the point(s) at which there is a significant or observable change
in trajectory. After successfully segmenting the trajectories into
skills, these learned skills can be combined together as skill trees
for potentially novel manipulations by appending skills into one
executable skill.

3.2.3. Combining semantic and physical maps

Semantic graphs can also take the form of semantic maps,
which are special graphs that relate spatial or geometrical details
(such as morphology of space, position and orientation of ob-
jects, geometry of objects as models, and any positions of special
places of interest) to semantic descriptions (such as the purpose
of objects). These spatial features can be acquired from SLAM
modules, including properties such as sensor readings or features,
orientation, and absolute or relative positioning of objects or
landmarks; through SLAM, the robot can obtain a map of the
environment that uses the contextual information to particularly
highlight instances of different objects or points of interest that
lie there and to identify where they are, for instance. Semantic
maps have also been used in identifying grasps by using ge-
ometrical features about the objects [103,104]. An example of
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Fig. 14. Illustration of how a context-free grammar can be used to construct parse trees as shown in [11]. The rules for their context-free grammar is described by
production rules 1 to 3. Their manipulation action grammar includes the non-terminal symbols A describing the action, O describing the objects or tools being used
within the activity, H describing the hand that is manipulating the object(s), AP and HP to describe the context of the action, hand and objects together. Actions

based in this grammar can then used in robot task planning.

how semantic maps can be created was proposed by Galindo
et al. [105], which integrates causal knowledge (how actions
affect the state of the robot’s environment) and world knowledge
(what the robot knows about objects around, their properties, and
their relations), using two levels of information: the spatial box
(S-Box) and terminological box (T-Box); they mark the physical
location of objects at the sensor level as well as note the free
space in rooms with S-Box, while the innate properties of these
objects are linked using ontologies with T-Box. Semantic object
maps (SOM) [101,102] also serve a similar purpose to combine
geometric data with semantic data to answer queries to deter-
mine whether a certain action can be executed given present
circumstances in its environment. For example, as in Fig. 13,
a Room instance can be inferred to be a kitchen if there are
items within the environment that are typical of a kitchen, such
as a stove or a fridge. With regards to creating semantic maps
through human interaction, works such as [106-108] aimed to
develop HRI systems to impart knowledge to a robot about its
surroundings: what lies around it and the conceptual knowledge
tied to these elements. Both systems use audio for interacting
with robots; in addition to this speech recognition system, [108]
combined a tangible user interface and a vision system with a
robot’s modules for motion planning and mapping to compile
and create a knowledge base which a robot can then use for its
navigation through its environment.

3.3. Context-free grammars

Context-free grammars are also an effective way of construct-
ing or representing semantic graphs or structures, as they guar-
antee completeness, efficiency and correctness. A context-free
grammar defines rules to creating semantic structures and sub-
structures as strings using its own symbols (called terminals)
defined within a finite set called an alphabet. These terminal

symbols can be used when substituting variable symbols called
non-terminals; the substitution process is described by production
rules, which allow us to generate sentences. With such a formal
definition of a context-free grammar, researchers have been able
to define rules that describe concepts such as manipulation/action
types which can then be useful for defining plans that robots
can use for execution and also for the composition of skills
into sub-skills. One such example of a context-free grammar
was proposed by Yang et al. [10,12,13,109], who studied how
manipulations in activities can be represented through grammar
and then broken down into visual semantic graphs. These parse
trees (as described in Fig. 14) are built from demonstrations
can then be used to form manipulation action tree banks. The
high-level representation serves as a symbolic representation of
the manipulations which describe each step required to solve a
given problem. In a different approach that also uses context-free
grammars (CFGs), Dantam et al. [110,111] also formulated robot
primitives and control policies using their own representation
called Motion Grammars (MG). A parse tree can be constructed
to reflect the procedures being executed and they can be broken
down by a motion parser to create sub-tasks until they have
been satisfied similar to the representation introduced by Yang
et al. The experiments conducted in their work showed that a
robot can effectively execute game-related manipulations while
maintaining a safe environment for humans playing with it. Even
though there was no discussion on how these can be used for
service robotics manipulations such as domestic or industrial
tasks, the use of MG can ensure safe, real-time control of robot
tasks.

4. Model-level representations

The aim of machine learning algorithms is to find a suitable
model or function for discriminating classes or for predicting
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Input RGB-D Grasp detection

Scoop detection

Input RGB-D Pound detection
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Input RGB-D

Fig. 15. An example of affordance-based pixel hot spot detection as done by
Myers et al. [112]. In their project, they can look at a scene and identify the
types of operations a robot can perform using objects found there by highlighting
tools that afford a specific action or purpose. A robot can use this to further
decide its actions.

effects or labels; techniques such as neural networks and prob-
abilistic graphical methods can all be considered as machine
learning algorithms in addition to those discussed within this
section. Although we have previously discussed some of these
models, they were used in the context of learning high-level
rules or inter-relationships between concepts (such as the object-
action-effect relationship). They are equally suitable along with
other machine learning approaches to learn lower-level con-
cepts that are not sufficient to explicitly represent knowledge
and to perform reasoning tasks. However, when applied, classi-
fiers can implicitly represent rules that describe classes needed
for a robot’s tasks. Therefore, such learning models complement
knowledge representations in performing specialized tasks, such
as image understanding, segmentation and processing, to then
further guide a robot’s future actions.

4.1. Classical machine learning techniques

Major successes in reinforcement and imitation learning can
been attributed to machine learning methods [113-116], proving
them to be useful for training robots in a bottom-up fashion.
Just as we have addressed before with other models such as
probabilistic models, imitation learning aims to teach a robot
about skills that can be incrementally learned and used for task
planning. Machine learning algorithms have been used in this
regard to learn new motor primitives or skills [99,117-119] or
to successfully classify or predict the outcomes of actions on
objects [120-122]. Works like [99] and [119] apply machine
learning algorithms to learn how to grasp objects based on their
features. In [120], the researchers aimed to represent the effects
of the robot’s motions on objects in its environment using a
support vector machine (or SVM, a model which can be used
to discriminate between classes by representing data in high

dimensions and finding a function or hyperplane that optimally
separates class instances), which, once trained, can be useful in
predicting the change in an object’s state that is reflected by its
displacement in the scene when performing actions (e.g. whether
the objects would roll or respond to pulling). SVMs are also used
in[121,122] to learn about object effects (such as push-ability and
stack-ability) based on physical properties of objects. To better
understand the consequences of its actions, they tweaked various
parameters such as the hand speed and the tactile sensors in the
robot’s hand. For the task of affordance detection, [112] used two
classifier variants, hierarchical mapping pursuit (or HMP, which
are similar to neural networks) and random forests (an ensemble
of decision trees or similar classifiers), to identify pixel hot spots
within a scene that suggest features related to affordances; an
illustration of this task is shown as Fig. 15.

4.2. Neural networks for deep learning

A vast number of studies have taken advantage of the effec-
tive method of deep learning and the use of neural networks
for tasks such as handwritten character recognition [123,124]
and image processing and recognition [125-127]. The power in
deep learning techniques lies in its property as a “universal
approximator” [128], where it can theoretically learn any model
or function given the right number of layers (meaning one or
more hidden layers). A deep neural network represents a feature
detector or classifier which can be stored and reused by process-
ing systems for specific purposes such as identifying affordances,
grasping points, object recognition, instance segmentation, and
many more. The amount of training time can be significantly
reduced by using pre-trained models and fine-tuning them with
other data sets, since the networks will retain valuable infor-
mation that can be extended to other domains. For instance,
it is customary to use pre-trained versions of well-established
networks such as VGG [126], ResNet [129] and GoogLeNet [130],
which have all been successfully applied to the task of labeling
images. We refrain from going too deep into this machine learn-
ing technique in this paper, and so we refer readers to [131,132]
for extensive reviews on deep learning and neural networks.

Neural networks have been proven to be capable of learning
very effectively in both supervised and unsupervised learning for
robotics. As a component to a knowledge representation, these
models can be used by a robot to handle decisions or disputes
among a variety of choices that may not be easily grounded in
explicit rules. One task for which they have particularly been
effective for is grasp synthesis; in [133], the authors review
the research in data-driven grasp synthesis, where the ideal or
optimal grasp type is selected among a sampling set of grasps.
A neural network (such as those in [134-136]) would be used to
recommend the ideal point to grasp objects, even those that have
never been seen before [41,137]. In addition to robotic grasping,
these networks are also effective for scene understanding [138-
140], specifically affordance detection within a scene [141-143].
They have also been applied to the generation of textual de-
scriptions of what they observe in their environment [144] for
communication between robots and humans. The identification
of what is around the robot can also be referenced to underly-
ing rules, facts, or beliefs. Deep learning works well in activity
recognition due to their exceptional performance in image seg-
mentation, object recognition and instance identification [126,
145,146], even in real-time [147]. Such networks can be used for
learning task plans from demonstrations to build upon a robot’s
knowledge base [148,149]; these learned plans can be used for
predicting future activities to anticipate the consequences and
forces exerted from those actions [150]. Finally, neural networks
can be used in learning control and the dynamics/physics of
actions [151-155].
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4.3. Summary

To conclude, many of these works have shown how machine
learning algorithms are effective in the classification of a wide
array of applications such as detecting object affordances and
grasp points. Traditionally, algorithms such as SVMs have been
used for a wide array of tasks and are now being replaced with
deep learned networks since neural networks are easy to train.
Neural networks are especially very useful for extending ap-
plications to simpler systems, and they have proved to work
exceptionally well in image processing tasks. We can use trained
networks to help us identify key features that can be adopted
to a programmed approach or to other rule-based classifiers. De-
spite their great success and trending usage among the robotics
community, we should not consider them as the “magic bullet”
for all problems [156]. They simply cannot serve as stand-alone
knowledge representations due to the lack of explicit knowledge
and meaning behind what they implicitly represent; nevertheless,
they are quite useful for guiding the decision-making process for
a robot.

5. Selecting knowledge representations

Previously, we examined several different approaches that
have been implemented successfully to solve a wide array of
sub-problems needed to build a complete and comprehensive
knowledge representation. Each technique comes with its own
limitations and strengths, and they should be used accordingly
with one another to create an ideal knowledge representation.
In this section, we would like to pay closer attention to the key
features of knowledge representations as observed in the works
discussed in this paper. We argue that the following components
(depicted as Fig. 16) are needed for a sufficient knowledge rep-
resentation: (1) the representation of motions or skills for task
planning at the semantic level of understanding; (2) a percep-
tion system, which integrates multiple channels of input such
as vision, haptics, natural language, audio or sensors to localize
objects, tools, or entities (humans, animals, etc.), to perceive ob-
servable states as well as possible obstacles, and to communicate
with other robots or humans; (3) the grounding of perception
or control to logical statements, symbols, or values, which can
be used to connect concepts and solve problems through logical
reasoning; (4) the retention of experiences as beliefs to repre-
sent uncertainty, which can influence a robot to consider other
possibilities in task planning as well as tailoring the robot’s ac-
tions to the human beings or environment it has been built to
operate under (through statistical reasoning); (5) the committing
of newly acquired knowledge and concepts for re-use as well
as the ability to learn new concepts; (6) a suitable definition
and representation of the (household) environment. A majority
of these things are unfortunately not a focus in several of the
representations discussed in this paper, as these components
are usually built independently from others. Perhaps the closest
representation to this idea is KnowRob through openEASE [157];
nevertheless, these systems still require a lot of work to get
them to the standard of working reliably among humans. In the
following subsections, we discuss these different ideas and why
they are important for knowledge representations used in service
robotics.

5.1. Component #1: Representing motions for action

Perhaps the most important of all components, a knowledge
representation gives meaning to a robot’s actions and environ-
ment; the way we represent these aspects are very crucial to
building an effective knowledge representation. In particular, we

Representing
Motions for
Action

Descriptive
Problem
Statement

The Ideal
Knowledge
Representation

Leamning from
Experience

Fig. 16. Overview of Section 5. When designing or selecting a knowledge
representation, researchers should take into consideration as many of these
concepts as possible; this however is a very challenging problem, as there
is no fundamental way to integrate these components together into one
representation.

should focus on meaning behind a robot’s actions and motions
taken for the understanding the consequences of its actions. A
representation of actions, whether grounding them as motion
primitives or denoting an action as a combination of skills, can be
used for signifying meaning behind the transition between object
states (or quite simply, the consequences of performing those
actions). When reasoning and determining its goal, the robot
needs to find the right actions to get to that goal. Saving these
primitives as skills also facilitates re-use, and they can always be
tuned to different parameters based on what the robot perceives.
The organization of activities or tasks as motion/skill trees makes
it easy to combine skills or primitives according to the current
problem and the present state of the robot’s world. Whether it be
representative of trajectories as in [100] or individual skills [6-
8,10,95-98], the idea that ties them together is the ability to
combine multiple units together to suit the problem at hand.
Using combinatorial representations such as [10,12,13,100,109]
and [110,111]) also emphasize the idea of compositionality and
flexibility of structures for task planning.

5.2. Component #2: Perception

An important component to any intelligent agent is percep-
tion, as an agent such as a robot needs to acquire input to
determine how to proceed with future actions. For instance, a
robot would need to acquire input to determine how it would
trigger conditions for rules such as in Fig. 1. Many solutions
discussed in this paper under Section 4 have been shown to be
effective in processing input to determine grasp points, object af-
fordance hot-spots, object recognition and instance segmentation,
etc. Other classical computer vision techniques have also been
used for processing input through images or videos to perform
similar tasks. A knowledge representation can also store useful
object descriptors in forms such as 3D models or point clouds,
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which are made available (implicitly or explicitly) in works such
as [43,44,57,149] and [134-136]. Now that we have shown that
we can detect and process all manner of input, we should instead
focus on how this can be done in real-time. In addition to this, the
models used for perception should be trained to handle uncer-
tainty as best as they can by training on a wider set of samples for
the corresponding household tasks the robot is given; this brings
us to another point in selecting suitable training samples to give
a general representation of several concepts to work with. For
instance, one possible limitation to machine learning models is
the likelihood of overfitting to the training set, causing the model
to develop a bias towards the data rather than learning what is
really important for classification.

5.3. Component #3: Grounding concepts with logic

As a basic premise of Al, knowledge representations allow
for reasoning using logical statements and expressions by using
explicit knowledge to make inferences to acquire implicit knowl-
edge describing the current state of the world that then reflects
the next likely action to be taken. Structures such as MLN (as used
in [82-84]) integrate logical rules with probabilities. However,
many of the learning models that have been developed lack the
grounding of such concepts to explicit statements. Without doing
so, it becomes a challenge to define expectations of actions, such
as the change in the state of the robot’s environment; when
ignoring states, it becomes difficult for a robot to determine
whether it has completed the action successfully or not [5], and
we cannot always assume that the robot will solve problems
without fail. Rules that imply an order to actions and tasks make
it easy to modularize actions. For instance, in [14-16], states
are explicitly reflected in object nodes within the network, and
these can be used for indicating whether a robot has successfully
performed the manipulation or not while also representing prece-
dence of its actions. Logical formulations of concepts also help
us to translate human-understood concepts into a “mid-level”
knowledge that can be understood by both humans and robots
alike.

5.4. Component #4: Probabilities & beliefs

Realistically, an agent cannot fully depend on logic to un-
derstand its world, as predictive modeling does not always give
a straightforward answer. It is through the use of beliefs that
a robot can statistically reason to make decisions about its fu-
ture actions. Several classifiers, for instance, cannot give a 100%
accurate answer about what it is identifying, and so weights
are assigned to give the best guess of what is presented to
the robot. Another example would be with a robot’s sensors:
innately, sensors capture noise from the input it gathers from
its surroundings. A robot should leverage its beliefs or estimates
with measurements because it will not always have a completely
correct understanding of its world. The use of probabilities also
makes for strong inferences through probabilistic models as dis-
cussed in prior sections. Beliefs can also be updated to make
stronger inferences about what a robot sees around itself to make
smarter decisions. For instance, by using information about object
affordances, a robot can select the right tool for a particular
job; identification of said tools can be done using learned classi-
fiers such as [112,141-143]. With respect to previously discussed
works, probabilistic and statistical reasoning methods have been
used in learning how its actions affect its environment. Leverag-
ing explicit knowledge using a robot’s beliefs about its surround-
ings, through both logical and statistical reasoning, would allow
it to make the best decision possible. For example, in the task of
SLAM, the joint task of location estimation and update of its belief

and location is important for the robot to proceed with navigating
its environment with as minimal error as possible. Weights may
also aid the robot’s system in deciding between multiple courses
of action so as to reduce the likelihood of task failure.

5.5. Component #5: Learning from experiences

To guide a robot in performing its duties, it is beneficial for it
to retain knowledge from prior experiences in solving a problem
(or failing to do so). This is a key advantage that is contained
in knowledge representations such as openEASE, RoboEarth and
KnowRob, where a robot can record details about the manipu-
lations it has performed over a distributed system. Other robots
that are attempting to perform the same manipulation can then
access those prior experiences to adapt its actions to its problem;
details such as trajectories can help to guide the current robot
to follow similar patterns. More specifically, in the KnowRob
representation from Section 2.3, one of the key aspects of the
platform is to record the experiences of performing a specific task
or manipulation. As in their recent work in [52], they illustrated
how one robot can use the experience of opening a fridge from
another robot to perform the same task; however, the exact tra-
jectory as learned from the previous robot cannot be completely
used due to differences in the state of the targeted object and its
environment. Therefore, it is not simply imitating what a previous
robot has done, but rather, it refines the motion to better suit the
current problem. As another example of alternatives for future
task planning, aside from others in Section 2.1, the FOON rep-
resentation draws from multiple demonstrations to potentially
create novel manipulation sequences. This is done through the
merging of subgraphs for each demonstration into one universal
FOON. With machine learning models, the overall idea of train-
ing these models is to adapt them to accurately predict future
instances. Probabilistic models, for instance, have been used for
predicting the effect of actions on objects, whether physically
or semantically. The ideal representation therefore should retain
experiences to guide the robot’s actions.

5.6. Component #6: Descriptive problem statement

Finally, the major difficulty in creating the ideal knowledge
representation is the inability to define a robot’s world precise
enough to solve every possible problem. As we talked about be-
fore, logical expressions can be useful for grounding causal rules,
while probabilistic expressions can help in answering ambiguities
using beliefs. However, to vividly paint the picture of the robot’s
world in different structures and databases in this way really is
no simple matter. A clear definition of the problem would help to
identify those areas in robot manipulation and learning that we
have done well enough and those areas that we still have a long
way to go with. For instance, by clearly defining or constraining
the environment in which a robot operates in, we can build
tools or models that will function well even in variability. The
idea of building more robust classifiers is mentioned in [158]
through the idea of open set recognition [156,159,160], where
the classification is redefined to account for robust detection of
known positive classes while rejecting both known and unknown
negative classes. The formulation of what the robot needs to
identify versus what does not concern it for a particular action
therefore is very important to clearly define.
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5.7. Final analysis

Given that we keep the previously mentioned components in
mind, we can develop more effective representations for robots.
It is important that we as researchers consider how we can
develop a robot that understands its environment and its own
actions to induce smarter behavior. Instead of confining a robot
to a single environment by programming it in a “hard-coded”
fashion, through a properly designed knowledge representation,
a robot can work in variants of the same environment it is
trained to work among (for example, one robot trained to work
in kitchens can recognize how a kitchen looks like and what it
expects to find within a kitchen). Humans can map their own
commands and understanding in that terminology, because we do
not understand the world in low-level representations as used in
machine learning algorithms or numbers for color values, depths,
et cetera. As in Al, a robot will be able to intelligently gather
new knowledge and make its own decisions and actions based
on its experiences (or those of other robots). Several sub-tasks
in robot problem solving can rely on machine learning models
or tools to derive a solution, and we believe that these tools
should adequately be used in unison with others. However, it is
still important to derive representations filled with meaning, as
implicit representations of knowledge can lead to unpredictable
results, and machine learning models are not solutions for intel-
ligent behavior in robots. An ongoing issue is the development
of a standard for representations and ontology [161] and it is
important to determine a common goal in the development of
independent knowledge representations. This would eventually
lead to promising developments for the future of robotics to
integrate multiple platforms and to sustain cross-architecture
communication and collaboration between robots through a com-
mon language, interface and/or network. In addition, we suggest
that researchers focus more on building representations that
can be built and accessed remotely through databases or cloud
systems to make robot learning easier while reducing the strain
on a robot’s on-board system to facilitate working in real-time
scenarios, such as RoboEarth and openEASE. The ability to re-
produce actions or sequences and the retention of experiences
as memory would make training robots more efficient and less
time consuming, since we do not necessarily have to learn tasks
or skills from scratch.

6. Concluding remarks

To summarize, this paper provides an overview of technolo-
gies and research that is being used in robot learning and rep-
resentation for service robots. To suitably define a knowledge
representation, it is important to distinguish representation from
learning. Machine learning models, for instance, are not sufficient
to be representations alone and are better referred to as spe-
cialized learning models or classifiers. However, the effectiveness
of such models should not be disregarded; rather, we should
emphasize the integration of multiple components together with
high-level knowledge to fully equip a robot with the means to
understand its environment and actions to perform meaningful
tasks. It is important to note that this paper has not talked
about the efficiency of representation and retrieval algorithms,
but instead this paper tackles the principles behind an effective
knowledge representation for a robot to use to its fullest po-
tential. Ideally, a knowledge representation should encompass
all of the necessary information needed by a robot to solve a
problem and understand its environment in order to do so effec-
tively. It should allow the robot to successfully perform several
actions such as perception/vision, knowledge acquisition, motion
and task planning, and reasoning. However, due to the highly

variable nature of domestic environments and households as
well as the question of safe operation among humans, building
a suitable comprehensive knowledge representation becomes a
very challenging and complex problem. In order to build suitable
knowledge representations, we should strive to break this larger
problem into smaller problem sets; we should take advantage of
the many models that solve several sub-problems that a robot
would typically be confronted with in manipulation problems. To
further improve on the usefulness of knowledge representations,
researchers can take advantage of large-scale distributed systems
and networks for sharing knowledge and experiences that would
help to teach robots how to do certain tasks from scratch with-
out the need for reprogramming or rebuilding solutions. These
distributed representations, such as those discussed in Section 2.3
can be hosted and built upon through the cloud or on the Internet.
Although challenging and ambitious, a cloud computing interface
for robots can greatly advance robotics technology. The most
important takeaway from this paper is that there is always a need
for standards to be developed and adopted by researchers in the
realm of service robotics in order for safe and efficient robots to
be deployed among humans.
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