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Abstract—Video understanding is one of the most challenging
topics in computer vision. In this paper, a four-stage video
understanding pipeline is presented to simultaneously recognize
all atomic actions and the single ongoing activity in a video. This
pipeline uses objects and motions from the video and a graph-
based knowledge representation network as prior reference. Two
deep networks are trained to identify objects and motions in
each video sequence associated with an action and low Level
image features are used to identify objects of interest in the video
sequence. Confidence scores are assigned to objects of interest to
represent their involvement in the action and to motion classes
based on results from a deep neural network that classifies an
ongoing action in video into motion classes. Confidence scores are
computed for each candidate functional unit to associate them
with an action using a knowledge representation network, object
confidences, and motion confidences. Each action, therefore, is
associated with a functional unit, and the sequence of actions is
evaluated to identify the sole activity occurring in the video.
The knowledge representation used in the pipeline is called
the functional object-oriented network, which is a graph-based
network useful for encoding knowledge about manipulation tasks.
Experiments are performed on a dataset of cooking videos to
test the proposed algorithm with action inference and activity
classification. Experiments show that using a functional object-
oriented network improves video understanding significantly.

Index Terms—Video Understanding, Activity Understanding,
Video Knowledge Representation.

I. INTRODUCTION

V IDEO understanding is a challenging topic that requires
completion of several difficult steps successfully, where

each step is a challenging and active research topic by itself.
It would usually require the video to be automatically split
into atomic actions, the activities and objects in the atomic
video clip to be successfully recognized, and a meaningful
understanding inferred based on the activities and objects. For
each step, extensive learning would be carried out for object
recognition, activity recognition, and video splitting, but these
are usually done individually.

We propose to learn the relationship between objects, ac-
tions, and activities and represent those relationships in a
graph. We use the graph as structured prior information for
video understanding when possible. For example, a video that
demonstrates a chef who is cooking an omelet comprises
multiple consecutive actions, and each action, such as mixing
eggs in a bowl, employs multiple objects such as a bowl,
a whisk, and eggs. To identify the actions, the structural
information between the objects (bowl, whisk, eggs) and
motions (mixing) can be useful. For instance, if we understand
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that eggs can be mixed using a whisk, we can associate the
object whisk with the objects egg and bowl.

The structural information between consecutive actions can
be applied to interpret an activity in a video. For example,
cracking eggs into a bowl occurs before mixing the eggs
in the bowl. Consequently, this knowledge can help with
predicting that the current ongoing action is mixing, knowing
that the previous action was cracking eggs. Embedding these
informative structures into a prior graphical structure and using
the embedding for inference at test time can improve video
understanding.

We use the coordination encoded in the object nodes
(e.g., bowl or eggs) and motion nodes (e.g., stirring) of the
knowledge-based graph presented in [1], [2] to recognize
actions (such as stirring eggs) in videos. The knowledge-based
network used for task inference, called the functional object-
oriented network or FOON [1], encodes knowledge about the
flow of actions coming one after another. Using this network,
we present a powerful object-oriented inference algorithm for
action and activity recognition.

We propose a pipeline that deploys object localities and their
motion features to identify active objects within an action.
We train a deep model for holistic motion recognition, which
helps with cases in which the object (e.g., salt in a chef’s
hand) is not easily detectable. The identified objects and
motion are fed to the inference stage with FOON to provide
a list of candidate functional units that can be associated with
the current ongoing action (e.g., cracking egg in a bowl).
The consecutive predicted functional units are evaluated to
understand the activity performed in the video (e.g., making
an omelet). This work has four main contributions:
• Integrating object localities, object flow features, and their

accordances from the functional object-oriented knowl-
edge representation for action recognition.

• Deploying the prior structural information between ob-
jects and motions in the functional object-oriented net-
work for functional action recognition in video (e.g.,
using the relationship between the objects egg, fork, and
bowl to interpret and label the action as “stirring eggs in
a bowl with a fork”).

• Using the structural information of consecutive actions in
the functional object-oriented network for task inference
(e.g., recipe classification based on a list of consecutively
predicted actions).

• Merging a deep neural network for motion recognition
with the FOON knowledge representation for functional
action recognition.

The remainder of this paper is organized as follows: in
Section II, we discuss the related work, in Section III, we
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describe the functional object-oriented network [1], and in
Section IV, we introduce the algorithm pipeline. In Section V,
we explain how objects of interest are identified and in Section
VI, we describe the procedure of functional unit recognition.
In Section VII, we discuss experiments and results, and we
conclude our findings in Section VIII.

II. RELATED WORK

A. Knowledge Representation

Knowledge representations have been successfully applied
to robotics and machine learning [3] and in natural language
processing for Wordnet [4], Verbnet [5], and Framenet [6].
In [7], Carlson et al. propose a knowledge-based architecture
to learn a language from web text. Some works introduce
and use a knowledge base for answering queries [8], visual
queries [9], and cuisine- and ingredient-oriented queries using
deep features [10]. Knowledge-based methods have been also
used in visual applications such as the ontological hierarchical
knowledge base for image content retrieval and video event
detection [11], scene understanding [12], description logics for
scene interpretation [13], visual structured knowledge base for
scene recognition and object detection [14], and a combination
of various knowledge based representations using machine
learning and statistical approaches [15]. In [16], the problem
of object affordance reasoning is modeled using a knowledge
base representation. In [17] a visual knowledge-based repre-
sentation and dataset are introduced for modeling relationships
in images. In [18], a knowledge representation-based method
for food recognition from an image was proposed, which is
close to our application. The lack of a structured knowledge
representation for joint object and motion representation mo-
tivated applying the functional object-oriented network for
video understanding in cooking videos.

B. Video Understanding

There is a broad area of work in video understanding.
Some works deploy costly setups such as physical sensors or
additional modalities (e.g., text) [19]–[21], and some research
performs analysis on spatio-temporal features of a sequence
in a holistic manner to label actions [22]–[25] or uses spatio-
temporal features of a person (e.g., models of joints or pose)
to classify actions [26], [27]. These methods are incapable
of handling variations in view, zoom, and occlusion easily.
Simultaneous video segmentation and understanding [28],
[29], [30] is also a very common research area. These methods
usually do not consider objects or variations in pose. Some
approaches extract and analyze a selection of frames for video
event summarization [31], and fast anomaly concentration and
detection [32]. Jain et al. propose a method that embeds
structure into a deep model [33] to incorporate knowledge with
deep models for activity recognition. Other deep approaches
proposed for activity recognition are [34], [35]. The motivation
to incorporate FOON for video understanding is based on the
group of research that use objects and their affordances and
states in a video for action recognition [36]–[41].

Currently, there are various multi-view applications, es-
pecially in surveillance systems. Information from multiple

cameras can enhance event summarization or task understand-
ing. Several researchers have proposed methods for handling
multi-camera scenarios. Event summarization in multi-view
videos using a deep learning approach [35], detection and
summarization of an event in multi-view surveillance videos
by applying boosting [42], and a machine learning ensemble
method [43] are instances of research in the area of multi-view
video understanding. This aspect of video understanding has
not been addressed in this work; however, the proposed frame-
work can be deployed in multi-view systems. A discussion on
the multi-view aspects of our video understanding pipeline is
included in Section VII-E.

C. Knowledge Representation for Video Understanding

Various approaches have been proposed to use knowledge
representation for video understanding, such as semantic-
visual knowledge bases like FrameNet and Imagenet for
modeling rich event-centric concepts and their relationships
for video event detection [44], a knowledge- and probabilistic-
driven framework for activity recognition [45], and seman-
tic representations for event detection [46], [47]. Souza et
al. deploy objects, actions and their bonds into graphs and
use simulated annealing for event inference using temporal
connections [48], [49]. Ren et al. [50] previously proposed
a Bayesian framework that uses object motions and their
relationships to improve object recognition reliability. This
model enables robots to learn the interactive functionalities
of objects from human demonstrations [51] [52].

Object information and analysis is an essential aspect for
activity recognition. The method in [53] deploys spatial and
functional constraints on the relationships between objects and
motions to semantically interpret videos. Modeling the mutual
context of human pose and objects using a random field model
[54], modeling relationships between object parts and people
in the scene using contextual scene descriptors and Bayesian
learning [55], and encoding objects for action classification
and localization are examples of work on video understanding
using object information. These works all assume that a person
is performing the act in the video, and, therefore, the human
pose would be essential for their approaches. We follow the
path of incorporating objects and extend it to the goal of action
recognition and activity inference by deploying our previously
proposed knowledge representation network [1]. Our work
is different from the noted object-based activity recognition
methods, in that our videos do not contain a person and its
pose. We use only the human hand and its location, if available
in the scene, as features to interpret the video.

III. FUNCTIONAL OBJECT-ORIENTED NETWORK

FOON is a knowledge representation for encoding knowl-
edge about manipulation tasks and, in extension, object af-
fordances. A FOON can also be used by a robot for solving
manipulation problems given a target goal. Currently, FOON
focuses on learning activities in the cooking and kitchen
domain, but it can also be extended to other domains and
environments.
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A. FOON Basics

A FOON is a directed acyclic graph that contains two types
of nodes (object and motion), making it a bipartite network
[56]. Figure 1 depicts a sample functional unit, the basic
building block of a FOON.

Fig. 1. Example of a functional unit with 2 input object nodes (green), 2
output object nodes (green), and 1 motion node (red).

Object nodes are defined as items that are being manipulated
or acted upon by a demonstrator, and motion nodes describe
the action being applied on objects such as cutting or mixing.
An object node (NO) is identified by its object type, an object
state, and a motion identifier, which denotes whether the
object is in motion during activity. Objects can also serve as
containers of other objects, and each node can be described
by a list of ingredients. Motion nodes are identified only by
their motion type. Within this graph, as in regular bipartite
networks, edges connect a pair of nodes; specifically, an edge
in FOON connects an object-motion pair. The edge direction
indicates the order in which an object may change in its state
through a motion action similar to Petri Nets [57], which
require transitions to activate or fire place nodes.

B. Functional Unit

A FOON consists of subcomponents or learning units
called functional units. Each functional unit describes a single,
atomic action as seen in an activity (an activity or subgraph
can be considered as a series of actions). For instance, in
the activity of cooking scrambled eggs, one functional unit
may describe the action of cracking an egg, and another may
describe the action of mixing the eggs in a bowl. A functional
unit describes the transition of objects states before and after
a manipulation motion occurs; this is described by input
object nodes (objects before manipulation) and output object
nodes (objects after manipulation). In this paper, our focus
is generating these functional units directly from instructional
videos for learning future instances of how tasks are executed.
A collection of subgraphs (or activities) that are merged
together to combine knowledge and remove duplicate units
is called a universal FOON. Each functional unit has three
components: input object nodes, output object nodes, and a
motion node that describes the action that possibly causes a
change in the input objects’ states, possibly causing a state
change, because an action may not always incur a change of
state. Each functional unit is also described by the time frames
at which they are observed in an activity.

C. FOON Construction

The graph shown in Figure 2 consists of nodes from 65
videos that were annotated in the form of subgraphs, which
consist of functional units that reflect each individual step

Fig. 2. Illustration of universal FOON with 4955 nodes (object and motion
nodes). FOON comprises many functional units, such as those highlighted in
image.

in a cooking procedure. Edges would be drawn between an
object node and motion node pair, where the object nodes are
those seen in an action within the cooking activity and the
motion node describes the action occurring. As we created
these subgraphs and parsed them, we compiled a list of objects
and motions to create labels for the different node instances
seen and to enforce consistency in labels (subgraphs were
created by multiple volunteers). When adding new information
(subgraphs) from other datasets, we only need to annotate
them to conform to the format of our graphs and parse them to
get the labels correct. The merging procedure will add these
newly parsed functional units to the network to ensure that
there are no duplicates. This merging procedure is detailed
more in our previous work in [1]. This is where this proposed
work fits in; the task of automatically generating subgraphs
from videos (especially those from other datasets) is difficult
to do, and manual annotation can be time-intensive.

D. FOON Sources and Statistics

A FOON ideally is learned directly from human demon-
strations, whether by video or from observation, and it is
automatically generated from such demonstrations, although in
the earlier phases of constructing FOON we opted to manually
label YouTube videos as subgraphs. In the future, we will try
to extend FOON using the method discussed in this paper.
After recording all functional units for a video, we parsed
the subgraph to ensure that all object and motion labels were
consistent with all other subgraphs.

Each subgraph was then merged into a single network,
referred to as a universal FOON. The merging procedure is as
follows: using a list of all functional units in GFOON , compare
each functional unit in all subgraphs to this list and append
those units of a subgraph which are not present in GFOON .
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In total, the network contains 1853 object nodes, 3102 mo-
tion nodes, and 15656 edges. Figure 2 illustrates the network
described by these statistics.

E. FOON vs. Other Knowledge Representations

FOON is not the first knowledge representation to address
video understanding. In this subsection, we discuss the main
differences between FOON and previous work. Previous works
in knowledge representation do not consider the joint represen-
tation of both objects and motions. Our work is inspired by the
theory of affordance originally proposed in [58]. Many follow-
up studies show that there is a link between manipulations and
objects. Our objective is to create a graphical representation of
manipulations where objects and motions describe affordance.
In terms of graphical representations, previous works capture
knowledge using probabilistic graphical methods or semantic
graphs/trees. However, they do not create a knowledge base
of activity from demonstrations that could then be used
for performing (possible) new manipulations. In addition,
for affordance studies, they would instead try to model the
relationship between objects and simple actions to predict the
effect or impact it has on them. A more general form of
representation akin to FOON is Petri Nets, where place nodes
are like object nodes and transition nodes are like motion
nodes. Certain input places are needed to fire or execute a
transition node, much like input object nodes must be available
to execute a given manipulation motion.

IV. VIDEO UNDERSTANDING PIPELINE

We propose a four-stage pipeline for video understanding.
The pipeline identifies the objects and motions in a video
sequence (associated with an action) and uses them together
with the knowledge representation to assign a functional unit
label to the event in action. An action refers to a single, atomic
event, and a sequence of actions represents an entire activity.
Consecutive identified actions will be analyzed as a whole to
understand the activity (recipe) being executed in the video.
The steps to the pipeline are as follows: 1) functional object
recognition, 2) functional motion recognition, 3) functional
unit recognition, and 4) task graph inference.

In the first stage of the pipeline, the functional object
recognition stage, all objects are identified and scores are
assigned to objects based on their usefulness in the scene. In
the second stage, functional motion recognition, each action (a
split of the video) is classified into its corresponding motion
class. Using the results from the first two stages and their
FOON accordances, each action is analyzed and associated
with a functional unit in the functional unit recognition stage.
Each recognized action (in the video) from a single video
is assigned a functional unit and looked up in the FOON
graph for them to eventually be classified as a whole activity
(recipe). This last stage is referred to as task graph inference.
An illustration of the video understanding pipeline is depicted
in Figure 3.

A. Functional Object Recognition

We apply the well-known Faster R-CNN algorithm for
localizing and labeling objects in the scene [59]. Faster R-
CNN is a two-part convolutional network that detects object
proposals and performs object classification simultaneously.
The output of the Faster R-CNN network is a set of bounding
boxes and their corresponding object class labels. We further
identify the used objects in the video sequence, which we
call objects-in-action, using three metricsthe closeness of the
human hand to the object, the magnitude of optical flow, and
the frequency in which the objects have been observed in the
video. We explain the functional object recognition stage more
thoroughly in Section V-A.

B. Functional Motion Recognition

In some cases, FOON is not able to correctly identify
the action in video using only object features. For example,
knowing that the objects bowl and egg are objects-in-action
could lead to multiple FOON inferences, because various
functional units contain the object nodes bowl and egg but have
different motion nodes (e.g., pouring or cracking). In another
example, when sprinkling salt with the hand, it is difficult to
visually discern that the object salt is being used, but the hand
motion will suggest the action of sprinkling.

To address these issues, we fine-tune the deep
(CNN+LSTM) network by Donahue et al. [23] with 10
classes in the last layer. This network comprises a CNN
portion and an LSTM portion. The frames of a sequence are,
one by one, given as input to the CNN and the output of the
CNN is given as input to the LSTM layer. The outputs of
the LSTM layer are averaged to provide a final prediction
for the class of the motion in action. The architecture of
the CNN network contains five convolutional layers and two
fully-connected layers. The initial five convolutional layers
and a single fully-connected layer on top is fed to one layer
of a recurrent LSTM layer. The output of the LSTM layer
is followed by the classification layer. We modified the last
layer so that the number of neurons in the last layer of the
network contains ten neurons to reflect the 10 motion types
we have selected for training. We train the CNN architecture
and the CNN + LSTM architectures separately. We use the
trained weights from [23] and perform training only for the
last layer of classification. We report only the better results
from the CNN+LSTM architecture.

Each motion class in this deep architecture is associated
with a set of motion nodes in FOON. The network assigns
confidence scores to each of the motion classes. A confidence
score reflects the probability of a class being assigned as a
label to the action happening in the video. For more details on
the approach, readers are referred to the algorithm described
in [23]. The output from this deep network is used to calculate
confidences for each candidate functional unit in the functional
unit recognition stage.

C. Functional Unit Recognition

We determine the meaning of a video by associating actions
with functional units. Objects-in-action are looked up in the
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Fig. 3. The pipeline for automatic functional unit identification.

universal FOON to identify candidate functional units. Can-
didate functional units are evaluated based on a confidence
score computed in this stage and thoroughly discussed later
in the paper. This consolidated confidence score incorporates
both object confidences produced from the functional object
recognition stage and motion confidences resulting from the
functional motion recognition stage. The confidence score
estimates how related each candidate functional unit is to the
ongoing action in the present sequence. The list of candidate
functional units is further sorted based on their confidences.
Functional units with the highest confidences are associated
with the current action.

D. Task Graph Inference
To identify the activity (sequence of actions) in a video, the

identified actions throughout the video are used together with
FOON look-up to predict the most likely activity label for that
video.

V. FUNCTIONAL OBJECT RECOGNITION

We recognize and localize all objects in a video sequence
(associated with an action) using the well-known Faster R-
CNN algorithm [59]. We then quantify the involvement of

each object in the current action by extracting optical flow
features and calculating hand-object distances in each frame
of the video sequence. A list of the most used objects is created
and named objects-in-action.

A. Recognizing Objects-in-action

In this stage of the pipeline, we use the bounding box asso-
ciated with each object for our computations. After localizing
objects, the less frequent objects in the video are excluded.
The center point of the bounding boxes resulting from the
Faster R-CNN algorithm are used to calculate the object’s
average distance from the hand. The distances are further
normalized using a Gaussian distribution. The optical flow of
objects within the video sequence are computed. The proposed
method in [60] is used to estimate the optical flow between two
frames. The estimated optical flow and the objects’ positions
are incorporated to estimate the flow of each object. Objects
with higher magnitude of optical flow are assigned a higher
confidence valuea higher value conveys a higher chance that
the object is moving and, hence, a higher probability that the
object is being used in the video sequence. Equation 1 shows
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how these metrics are integrated to estimate a confidence for
each object.

confobject = α.cflow + β.cdist + γ.cfreq (1)

In Equation 1, cflow, cdist, and cfreq are the optical
flow confidence, distance to hand confidence, and frequency
confidence of each object, respectively; confObject is the final
calculated confidence of the object. Coefficients α, β and
γ are tuned manually and represent how much each factor
contributes to the final confidence of each object. Figure
4 depicts the procedure of identifying objects-in-action for
a simple action of whisking eggs, using the three metrics
mentioned in Equation 1.

Fig. 4. Example showing procedure of identifying objects-in-action. Items
such as egg and whisk would be possible candidates for participating in an
egg-whisking motion.

In the example of Figure 4, we observe an egg-whisking
motion occurring in which objects egg, whisk, and bowl are
at the top of the list of objects-in-action and objects pan and
stove have lower confidences.

VI. FUNCTIONAL UNIT RECOGNITION

Each action in the video is associated with the closest
functional unit from FOON. To associate the correct functional
unit with an action, unrelated functional units are filtered
out. Filtering is performed using functional unit confidence
estimation and probing, as discussed in this section.

A. Functional Unit Confidence

The pipeline recommends a list of in-use objects from
the current action, named objects-in-action (Section V-A).
Objects from the list are looked up in FOON, and functional
units containing them are identified. The identified functional
units are suggested as candidate functional units that can
be associated with the current action in the video. Every
functional unit contains several object nodes that may or may
not be included in the list of objects-in-action. The overlap
between the object nodes (of a functional unit) and the objects-
in-action are named as the used set, and the remainder of the
object nodes is tagged as the unused set. These two sets of
objects are used to determine whether we should support or

penalize a candidate functional unit. Equation 2 shows how
the confidence of a candidate functional unit is estimated.

confFOON =

∑Nused

n=1 confn
Nused

− penalty + κ.bonus (2)

In this equation, confFOON is the estimated confidence,
Nused, is the number of object nodes in the used set of
a candidate functional unit, and confn is the confidence of
each of those objects (subsection V-A). The bonus term is
estimated based on the pixel-wise overlap of all objects used in
a candidate functional unit. This term represents the extent of
interaction between the objects. The penalty term calculated
by Equation 3, represents the penalty applied to the estimated
confidence.

penalty =

Nnotused∑
m=1

λ.confm +

Nextra∑
k=1

η.confk (3)

The confidence of the objects listed in the list of objects-in-
action but not used in the candidate functional unit, confm,
together with the confidence of the objects not listed as
objects-in-action but used in the candidate functional unit,
confk, contribute to the penalty. In this equation, Nnotused
is the number of unused objects, and Nextra is the number
of objects not listed but used in the candidate functional unit.
In Equation 2, the constant κ tunes the effect of bonus and
penalty. The constant λ in Equation 3 tunes the effect of
unused objects on the penalty term, and the constant η tunes
the effect of objects used but not listed. Figure 5 illustrates the
procedure of confidence estimation for a candidate functional
unit. The algorithm for confidence calculation is shown in
Algorithm 1.

Fig. 5. Illustration of functional unit confidence estimation. In this example,
identified objects-in-action are pot, spoon, and stove, with confidences 0.9,
0.8, and 0.7 respectively (λ=η=0.2).

The confidence calculated in Equation 2 focuses solely on
object interaction and their functional accordances. We believe
motion can introduce additional information for confidence
calculation. To include functional motion for estimating the
confidence, we incorporate the outputs from the trained deep
architecture (CNN+LSTM) for motion classification. We fuse
the output of the CNN+LSTM network with the confidence
estimated solely based on object interaction, confFOON . The
output of the CNN+LSTM network for motion recognition has
10 confidence scores representing the probability of each of the
motion classes happening. We rank the motion classes based
on their resulted confidence scores. Finally, the confidences of
functional units in Equation 2 are combined with the results
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Algorithm 1 Confidence Calculation
1: list = ∅ // holds objects and their confidences
2: for object ∈ sequence do
3: cdist = abs(object− hand)
4: cfreq = frequency(object)
5: cflow = opticalFlow(object)
6: confobject = α.cflow + β.cdist + γ.cfreq

7: list.append((object, confobject))
8: end for
9:

10: list.sort()
11: topK = list.selectTopK() // objects in action
12: // Find all candidate functional units associated with the top K objects
13: candidates = FOONLookUp(topK)
14:
15: for c ∈ candidates do
16: nodes = c.getObjects()
17: overlap = objectOverlap(nodes.objects, topK.objects)
18: Nused = size(overlap)
19: bonus = pixelOverlap(nodes.objects)
20: unused = (topK − overlap) + (nodes− overlap)
21: penalty = average(unused.confidences)
22:
23: confFOON (c) =

∑Nused
n=1 confobject(n)

Nused
− penalty + κ.bonus

24: end for

from the CNN+LSTM network to extract a final confidence
for the functional units as shown in Equation 4.

confmotion = confFOON + α.confLSTM (4)

In Equation 4, confFOON is the confidence calculated
in Equation 2, and confLSTM is the confidence calculated
based on results from the CNN+LSTM network. Coefficient
α balances the effect of each of those parameters.

B. Probing

Each object is individually looked up in FOON, and all
functional units containing that object are identified. A list of
candidate functional units containing the object is acquired.
The list contains candidate functional units that may associate
with the current action. We exclude the objects with lower
confidences, confobject, from the list, to reduce the number of
potential objects-in-action and, as a consequence, the number
of probed objects and candidate functional units. To illustrate,
assume that the filtered list of objects seen in the sequence or
probed objects are egg, bowl, and fork and the ground truth
functional unit associated with the sequence that includes the
motion node mix with the objects bowl, egg, and fork as input
nodes and egg, and fork as output nodes. Individually probing
functional units in FOON using the list of objects produces
a list of candidate functional units that contain those objects.
Table I shows some of the 674 candidate functional units that
contain the objects-in-action for this specific example. Any
other functional unit that is not identified does not contain the
objects.

Each probed functional unit from FOON contains object
nodes that may or may not have been observed in the current
video sequence (associated with an action). The last column of
Table I depicts the overlap between the objects included in a
probed functional unit with the identified objects in the video
sequence. The probed functional units with an overlap value
less than a specific threshold are excluded. Confidence values
for the remaining functional units are computed, and those

TABLE I
RESULTS OF PROBING OBJECTS IN FOON BASED ON THE EXAMPLE IN

SECTION VI-B. THE OBJECTS-IN-ACTION ARE SHOWN IN BOLD.

Input Nodes Motion Output Nodes Overlap
1 mixer, bowl mix mixer, bowl 0.5
2 fork, egg, cup stir fork, egg, cup 0.67
: : : : :

674 bowl, pan, pasta pour pan 0.25

with the highest confidence values are selected. The selected
functional units are the most likely to be associated with the
ongoing action.

VII. EXPERIMENTS AND RESULTS

In our experiments, we used the annotated videos used for
the creation of the universal FOON in [1] and the videos
from the MPII Cooking Activities Dataset, summing to a
total of 338 videos [61] 1. At the time of writing this paper,
the universal FOON consisted of data from 338 instructional
videos and a total of 3102 functional units. This includes a
subset of instructional videos from YouTube and videos from
the MPII Cooking Activities Dataset [61]. For the current
experiments, we also manually labeled some of the video
sequences in FOON with object bounding boxes and their
categories.

We used 11 of the 338 cooking videos as our test dataset,
which included an overall amount of 55 functional units. We
performed our tests in 11 iterations in a leave-one-out manner:
in each iteration, one video was entirely left out, and the
remainder of the videos were used to create a FOON. The
lack of training data for object recognition, lack of labeled
ground truth data for the videos, and a shortage of instances
of each kind of functional unit in the dataset forced us to only
use 11 videos for the experiments.

For testing the pipeline, we conducted three different ex-
periments based on both manually- and automatically-labeled
objects. 1) comparing functional unit recognition using only
FOON look-up with functional unit recognition using the fu-
sion of FOON and motion recognition, 2) video understanding
for functional unit recognition with and without FOON, and
3) task inference or recipe classification.

A. Object Overlap Metric

The overlap between a candidate functional unit and its
corresponding ground truth functional unit was used to evalu-
ate the results. This overlap metric was calculated for each
action in the video separately. The metric used was fairly
simple: if the motion node of the candidate functional unit was
equivalent to the motion node of the ground truth functional
unit, the overlap between their object nodes was counted.
Consequently, precision and recall were computed using the
object overlap. Precision was measured as overlap divided by
the number of object nodes in the candidate functional unit,
and recall was measured as overlap divided by the number of
object nodes in the ground truth functional unit. If the motion

1The videos and graphs of FOON are available at: http://www.foonets.com

http://www.foonets.com/
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nodes were different, precision and recall were assumed to be
0. Figure 6 illustrates how precision and recall were calculated.

Fig. 6. Illustration of how overlap is measured. In this example, overlap
is equal to 4 nodes, precision is 100 percent and recall is 80 percent. If the
ground truth motion node was anything but slice, precision and recall would
be 0 percent.

B. Functional Unit Recognition

We used the time stamp labels in the universal FOON to
split the videos in the dataset into its comprising actions. For
example, a video demonstrating a cook making scrambled eggs
was split into several atomic actions such as cracking eggs,
pouring eggs into a bowl, and mixing eggs with a whisk.

1) Functional Unit Recognition using FOON: Each action
sequence in a video was fed into the algorithm that identified
the functional unit best fit for that action based on the metrics
discussed in Section V. In each iteration, we used a single
video for evaluation and the other 337 videos to create an
iteration-specific FOON. Functional units corresponding to an
action sequence in a video were identified by processing the
iteration-specific FOON. After identifying functional units,
precision and recall were computed as defined in Section
VII-A for all candidate functional units for the top 10 results,
as shown in Figure 7.

Fig. 7. Precision and recall, as observed in manual and automatic object
recognition for top 10.

In Figure 7, the horizontal axis represents the number of best
functional units analyzed for precision and recall calculation.
The solid curves show precision, and the dashed curves show

recall calculated on 55 functional units for both manually-
and automatically-labeled objects. Figure 7 shows that the
algorithm can potentially improve with additional procedures.
We can also see that precision in Figure 7 is always higher
than 80 percent, showing that our algorithm sometimes missed
the objects in the video; however, when it assumed an object
was being used in a functional unit, it usually identified
the functional unit correctly. In Figure 8 snapshots of three
sequences of a cooking video are depicted with their predicted
functional units. In this example, the correct functional unit is
always included in the top three identified functional units.

2) Functional Unit Recognition with Motion Recognition
and FOON: We fused motion recognition with FOON look-
up to improve the recognition procedure. We created motion
classes by selecting the nine most frequent motion types from
the FOON motion nodes (e.g., pour, pick+place, and cook) [1].
To accommodate the other types of motions not included in
the nine most frequent motions, we designed a class labeled as
the “other” class. We extracted optical flow features from each
sequence in the video, applied the CNN+LSTM network on
RGB and optical flow sequences of each event, and performed
an averaging of the outputs from the two networks. The
architecture returned 10 values representing confidences for
the 10 classes. The motion confidence values were used in the
computation of confidences for the candidate functional units.
Table II shows the top 1, top 3, top 5, and top 10 accuracy
of prediction for functional unit recognition using both FOON
and motion recognition.

TABLE II
TOP 1 TO 10 ACCURACY OF PREDICTION FOR FUNCTIONAL UNIT

RECOGNITION USING FOON AND MOTION RECOGNITION.

Using FOON Using FOON + Motion Recognition
Top 1 56% 64%
Top 3 75% 84%
Top 5 80% 89%
Top 10 89% 98%

The accuracy of prediction for an action was computed by
comparing the identified functional units with the ground truth
functional units. If the motion node of the identified functional
unit was equivalent to the motion node of the ground truth
and the overlap of object nodes was higher than 80 percent,
we determined the prediction to be correct. We counted the
number of correct predictions over all functional units in
the test set and calculated the accuracy. In some cases, the
motion node of the ground truth varied in text with the motion
node of the identified functional unit, while having the same
interpretation (e.g., whip vs. stir or slice vs. cut). These cases
of motion nodes were considered equivalent.

As shown in Table II, the accuracy of functional unit
recognition when motion recognition was combined with
FOON look-up was higher than functional unit recognition
without motion recognition. This shows adding automatic
motion recognition to the pipeline improves the motion node
recognition and leads to better identification of functional
units. The deep network guesses the motion node in only 47
percent of the cases. The complexities of the videos, such as
background variations, different camera views, and moving
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Fig. 8. Example of functional unit recognition using labeled and manually-split sequences for scrambled egg recipe.

cameras, prevented it from producing the desired accuracy. In
experiments, we set α in Equation 4 to less than 0.2, so the
results from the neural network would not adversely influence
the final results.

3) Analysis: To see the effect of each part of the pipeline
on the results, we looked deeper into each part. The automatic
motion recognition by itself achieves 67 percent accuracy,
whereas the functional unit recognition without motion recog-
nition achieves 61 percent accuracy (top 2). There are two
differences in these two evaluations that make them incompa-
rable. First, for automatic motion recognition, the number of
classes of motion was generalized and reduced to 10 classes,
whereas for functional unit recognition, there were more than
50 types of motion nodes. Second, functional unit recognition
identifies the action with a focus on both the objects and
the motion occurring, whereas the aim of motion recognition
is to recognize the motion class in an action. Although not
comparable, motion recognition is a good feature to combine
with FOON for optimal functional unit recognition.

We calculated the overlap between objects-in-action and
the identified functional units as 84 percent. This shows that
although the majority of objects were identified correctly,
the accuracy of functional unit recognition was lower than
expected due to mistakes in identifying the motion nodes.

In another experiment, we applied the pipeline combined
with motion recognition for automatically recognized objects
and report its top 10 results in Figure 7. Although object
recognition is an important stage of the pipeline that can be
improved, we do not address it further, as that is not our
specific goal in this paper. Snapshots of various sequences
with their ground truth representation and identified functional
units are depicted in Figure 9.

C. Video Understanding

The pipeline was evaluated based on the extent it under-
stands a video using the overlap metric. Precision and recall
were calculated for both object and motion nodes for all
actions of each video individually, and the average precision
and recall was calculated for all videos over the top 10 results.
Figure 10 shows the calculated results.

The results show that the pipeline is capable of perceiving an
understanding of the video, especially when the top 5 results
are used. The lower values for recall may be due to errors

made in identifying objects-in-action. We calculated the F-
Score metric using recall and precision, as discussed in [62].

The video understanding F-Score was calculated for the
pipeline in two instances: 1) when FOON was used, and 2)
when FOON was not used; the results are depicted in Figure
11. When using FOON, we calculated the F-Score by using
the overlap metric for ground truth and identified functional
units. When not using FOON, we calculated the overlap metric
between the highest-ranked objects and the objects in the
ground truth functional unit, and we calculated the overlap
between the highest-ranked motion classes with the motion
nodes in the ground truth. The sum of these two overlaps was
used to calculate the precision and recall and F-Score. Using
FOON achieved higher F-Scores than not using FOON, as
object and motion nodes in a video are perceived much better
when using FOON as reference.

D. Task Inference (Recipe Classification)

We deployed our algorithm for recipe classification of
unseen cooking videos. We used eight videos, including one
salad recipe, two omelette recipes, two bread recipes, one cake
recipe, one noodle recipe, and one sandwich recipe for the
test. We classified all the recipes in FOON into 13 classes of
recipesCake, Pizza, Bread, Omelette, Soup, Barbecue, Sand-
wich, Smoothies, Pasta, Coffee/Tea, Salad, Mashed potatoes,
and Other.

Task inference was performed after all functional units in
a video were identified. All the identified objects-in-action
used in the video and the identified functional units equally
contributed to the task inference stage. To classify a video
to a recipe, clusters of recipes were created using all videos
in the train set. The similarity distance between the current
video and every (recipe) cluster was calculated, and the closest
cluster was selected as the recipe associated with the video. To
calculate the similarity distance between the current video and
a cluster, the similarity of the video with each of the videos
in the cluster was calculated and was averaged. The similarity
distance between a video and a recipe was computed as the
similarity of functional units in the video with the similarity of
functional units in the recipe aggregated with the similarity of
the used objects in the video with the similarity of the object
nodes in the recipe. In the similarity comparison, we did not
check the order of functional units. The recipe class with the
highest similarity was assigned to the video. Figure 12 shows
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Fig. 9. Snapshots of events, their ground truth functional unit representation and predicted functional unit.

Fig. 10. Graph showing results of overlap metrics for video understanding
for top 10.

Fig. 11. Graph showing calculated F-Scores for video understanding with
and without FOON.

the identified functional units of a video demonstrating a cook
making noodles.

The top 2 results of recipe classification are shown in Table
III. The recipe classification algorithm returned the predicted
class names based on their confidence scores. If the class name
with the highest confidence is equivalent to the ground truth
class name, the classification is assumed as correct.

Fig. 12. Illustration of identified functional units for noodle-cooking video
(identified as noodle by proposed pipeline)

TABLE III
RECIPE CLASSIFICATION RESULTS.

Used Procedure Top 1 Top 2
Manually labeled Objects 37.5% 100%

Automatically labeled Objects 25% 75%

As shown in Table III, the algorithm using FOON can
approximately guess what recipe is being cooked in the video,
assuming that all objects in the video sequence are identified
correctly. The motion of the objects can also insinuate the type
of recipe activity that is occurring.

E. Discussion

Several studies have worked on activity recognition using
either knowledge bases or other methods, but they represent
a video with a sentence or a label for the activity. Our work
outputs sub-graphs representing short activities for each part
of the video. As such, our work is incomparable to other work.
We analyzed our work through the overlap metric and com-
pared two approaches for video understandingpipeline using
FOON and pipeline not using FOON. It is clear that some
methods in the literature can be substituted with the method
we use to integrate with FOON, but our current focus is to
prove that FOON is a powerful knowledge representation that
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can understand video and would be able to semi-automatically
build itself in the future.

Although the proposed framework uses information from
multiple views throughout the video, it applies information
from only one camera at each specific time. However, due
to the importance of simultaneous multi-view applications,
we discuss briefly a few ways that the framework can be
integrated into a multi-view system. The proposed framework
can be applied individually to multiple videos in a multi-view
system. Individual predictions can be gathered from multiple
deployments of the framework. The predictions can be further
combined to reach to a final prediction of the actions and
activity in the video. We can also combine the proposed
framework from a multiple view aspect at the confidence level.
Confidences of objects can be extracted at each view and fused
to reach a final confidence for the objects. The framework can
further run as proposed.

The goal of the proposed framework is to identify the
actions and tasks in a video. The framework can be used as
the vision system of a robot chef or in any robotic system that
deploys and manipulates utensils, such as a robot carpenter,
robot waiter, etc.

VIII. CONCLUSION AND FUTURE WORK

The main objective of this paper was video understanding
with the help of the FOON knowledge representation. We pro-
posed a pipeline for video understanding using the functional
object-oriented network (FOON) and deep neural networks
and make use of low-level image features together with deep
networks to identify objects of interest. Using objects of
interest (objects-in-action) and deep motion understanding, we
associate the actions in a video with the correct functional units
in the knowledge representation (FOON). We demonstrated
that using FOON significantly improves the performance of
video understanding in comparison to not using FOON.

Our current pipeline is a big step towards automatically
extending the knowledge representation graph, which presents
a significant improvement to network applications, such as
robots solving manipulation problems given a target goal.
In future work, we would like to explore other methods of
identifying objects-in-action, incorporate object recognition
confidences to handle misidentified objects, utilize states of
objects [63], and incorporate history of events for inference
using FOON. We are also working on generalizing the knowl-
edge contained within a FOON to achieve more generic video
inferences from an expanded version of FOON [2].
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