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Abstract— Pouring is a simple task people perform daily.
It is the second most frequently executed motion in cooking
scenarios, after pick-and-place. We present a pouring trajectory
generation approach, which uses force feedback from the cup
to determine the future velocity of pouring. The approach uses
recurrent neural networks as its building blocks. We collected
the pouring demonstrations which we used for training. To
test our approach in simulation, we also created and trained a
force estimation system. The simulated experiments show that
the system is able to generalize to single unseen element of the
pouring characteristics.

I. INTRODUCTION

Each time a daily manipulation is performed by humans,
its execution is adjusted according to the environment and
is different from last time. To make robots more widely
useful, researchers have been trying to help robots learn
a task and generalize to different situations, to which the
approach of teaching robots by providing examples has
received considerable attention, known as programming by
demonstration (PbD) [1].

Among many manipulation tasks, pouring is the second
most frequently executed motion in cooking scenarios after
pick-and-place [2], [3], [4]. It relies on rotating a cup (or
a container in general) that holds certain material. Sufficient
rotation of the cup makes the material come out and sufficient
recovery makes the pouring stop. Humans typically pour
using vision feedback as well as force feedback. However,
since the two senses are correlated in pouring, in this paper,
we only use force feedback which is easier to define.

There are many existing motion trajectory generation
frameworks. A popular one is called dynamical movement
primitives (DMP) [5]. DMP is a stable non-linear dynamical
system, and is capable of modeling discrete movement such
as swinging a tennis racket [6], playing table tennis [7]
as well as rhythmic movement such as drumming [8] and
walking [9]. DMP consists of a non-linear forcing function,
a canonical system and a transformation system. The forcing
function defines the desired task trajectory.

Another approach for motion generation is based on Gaus-
sian mixture model (GMM) and Gaussian mixture regression
(GMR) [10]. GMM is used to model the trajectories of a task
and GMR is used for task reproduction. GMM is learned
using all the variables of a movement including time stamps,
and GMR is conducted by inferring the movement variables
using the learned GMM conditioned on the time stamp.

Principal Component Analysis (PCA) also proves useful
for motion generation. Known as a dimension reduction
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technique used on the dimensionality axis of the data, PCA
can be used on the time axis of motion trajectories instead to
retrieve geometric variations [11]. Besides, PCA can be ap-
plied to find variations in how the motion progresses in time,
which, combined with the variations in geometry enables
generating motions with more flexibility [12]. Functional
PCA (fPCA) extends PCA by introducing continuous-time
basis functions and treating trajectories as functions instead
of collections of points [13], [14]. [15] applies fPCA for
producing trajectories of gross motion such as answering
phone and punching, and for making the trajectories avoid
obstacles with the guidance of quality via points. [2] uses
fPCA for generating trajectories of fine motion such as
pouring.

Recurrent neural networks (RNN) recently received in-
creasing attention. At any time step, RNN takes a given input
and the output emitted from the last time step, and emits an
output which is passed to the next time step. The mechanism
of RNN makes it inherently suitable for handling sequential
data. Similar to DMP [5] and GMR based approach [16],
RNN is also capable of modeling general dynamical systems
[17], [18]. RNN can be readily used to generate trajectories
by relating the emitted output to future inputs. For example,
[19] generates English hand writing trajectories by predicting
the location offset of the tip of the pen and the end of a
stroke. As more manipulation datasets become available [20],
it become feasible to learn a deep RNN.

The paper goes as follows. In Section II, we review the
fundamentals of RNN and particularly LSTM, and present
our pouring system. In Section III, we describe the data
collection and preparation process, training the system, and
creating and training a separate force estimation system. In
Section IV, we conduct experiments to evaluate whether
our system generalizes to unseen situations. We discuss the
performance of our pouring system in Section V.

II. METHODOLOGY FOR POURING TRAJECTORY
GENERATION

In this section, we describe in detail our system of gen-
erating a pouring trajectory which builds on long short-term
memory. To explain why we choose RNN as the building
block, prior to the system description, we review the basics
of traditional RNN, and of one particular structure, the long
short-term memory.

A. Recurrent Neural Network

Recurrent neural network (RNN) conducts its computation
one step at a time, and at any step its input consists of two
parts: a given input, and its own output from the previous
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Fig. 1. Mechanism inside an LSTM unit, Zaremba’s version [24]

time step. The idea is shown in Eq. (1) where xt is the given
input, ht−1 and ht are output from the previous and at the
current step. The weight W and bias b can be learned using
Backpropagation Through Time [21].

ht = tanh
(
W [ht−1, xt]

> + b
)

(1)

In theory, by including its past output in its input, RNN
takes the entire history of given inputs into account when
it conducts computation, and therefore is inherently suitable
for handling sequential data. However, the traditional RNN
as shown in Eq. (1) is difficult to train and has vanishing
gradients problem, and therefore is inadequate for problems
involving long-term dependency [22], [23]. Long short-term
memory (LSTM) is a specific RNN design that overcomes
the vanishing gradient problem [23]. We use a version of
LSTM whose working mechanism is described by [24]:

i = sigm
(
Wi[ht−1, xt]

> + bi
)

(2)

o = sigm
(
Wo[ht−1, xt]

> + bo
)

(3)

f = sigm
(
Wf [ht−1, xt]

> + bf
)

(4)

g = tanh
(
Wg[ht−1, xt]

> + bg
)

(5)
ct = f � ct−1 + i� g (6)
ht = o� tanh(ct) (7)

where i, o, f are the input, output, and forget gates respec-
tively, c is the cell, sigm is short for sigmoid, and � represent
element-wise multiplication. Fig. 1 gives an illustration.

We identify RNN, and specifically LSTM, as the architec-
ture with which we build our pouring system. The reasons
include:

1) The structure of RNN makes it inherently fit for
handling sequences.

2) RNN is capable of modeling dynamical systems. Since
a dynamical system is powered by velocity (or accel-
eration), it has the ability to react to changes of the
environment.

3) RNN has proven ability to generate both categorical
and continuous-valued sequences.

4) RNN eliminates the needs for temporally aligning
sequences before modeling, and therefore preserves the
dynamics in a sequence.

5) LSTM supercedes the traditional RNN, and has proven
ability to handle long-term dependency.
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Fig. 2. The architectures of (left) frc, (middle) vel, (right) stp. LSTM16
refers to 16 LSTM units. FC refers to fully connected.

B. Generating Pouring Trajectory

The pouring system predicts the velocity of rotation using
the force feedback produced by the cup, which is shown as
(middle) in Fig. 1.

We assume n trials of pouring motion are available.
The data of trial i are represented by (θ1...Ti

, f1...Ti
, z)(i),

where θ1...Ti
is the sequence of cup rotation, Ti is the

sequence length, f1...Ti is the sequence of sensed force,
and z represents static data that characterize the trial. For
simplicity, we assume θ, f, z are all one-dimensional.

We refer to the system that predicts the velocity of rotation
as vel. The actual velocity is computed by

ωt = θt+1 − θt, t = 1 . . . Ti − 1. (8)

At step t, vel takes [θt, ft, z]
> as input, and generates

predicted velocity ω̂t:

ht = LSTM([θt, ft, z]
>) (9)

ω̂t = fc(ht) (10)

where ‘fc’ is short for ‘fully connected’. The loss is defined
using Euclidean distance:

Lvel =
1

n

n∑
i=1

1

Ti − 1

Ti−1∑
t=1

(ω
(i)
t − ω̂

(i)
t )2. (11)

In order to automatically stop the generation process after
the pouring task has completed, we create a stopping system.
We refer to the system that stops the pouring motion as stp
shown as (right) in Fig 2, which is a binary classifier. At
step t, stp takes [θt, ft, z] as input, and outputs a 2-vector
rt. We define class 0 as ‘continue’, and class 1 as ‘stop’.

ht = LSTM([θt, ft, z]
>) (12)

rt = fc(ht) (13)
st = softmax(rt) (14)

Let the target be represented by a trivial one-hot vector s′t =
[s′t,1, s

′
t,2]
>, where s′t,1, s

′
t,2 ∈ {0, 1} and s′t,1 + s′t,2 = 1.
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Fig. 3. Initializing frc, vel, stp

The loss is defined using cross entropy:

Lstp = −
n∑

i=1

Ti∑
t=1

(
s
′(i)
t,1 lns(i)t,1 + s

′(i)
t,2 lns(i)t,2

)
(15)

The initial state of LSTM includes c0 and h0, which are
obtained by

c0 = fc([θ1, f1, z]>), (16)
h0 = tanh(c0), (17)

as shown in Fig. 3.
The trajectory is generated by first initializing vel and

stp, and then keep generating and executing rotational
velocities. Specifically, the trajectory generation process is
described in Alg. 1.

Algorithm 1 Trajectory Generation
1: Initialize vel and stp using [θ1, f1, z]

>

2: t← 1
3: while True do
4: ωt ← vel([θt, ft, z]>)
5: θt+1 ← θt + ωt

6: s← argmax stp([θt, ft, z]>)
7: t← t+ 1
8: if s == 1 then
9: Break

10: end if
11: end while

III. DATA PREPARATION AND TRAINING

The equipment for data collection includes six differ-
ent cups, ten different containers, one ATI mini40 force
and torque (FT) sensor, and one Polhemus Patriot motion
tracker. We refer to the pour-from container as cup and
the pour-to container as container. All cups are mutually
different and so are all the containers. The FT sensor records
(fx, fy, fz, τx, τy, τz) at 1KHz. The motion tracker records
(x, y, z, yaw, pitch, roll) at 60Hz. The cup, the force sensor,
and the motion tracker are connected by 3D printed adapters,

Fig. 4. 3D printed adapters that connect the cup, the force sensor, and the
motion tracker.

shown in Fig. 4. The materials that are poured include water,
beans, and ice.

We obtain the empty reading by keeping an empty cup in
a level position, taking 500 FT samples (which takes 0.5
second), and then taking the average. Similarly, for each
trial, we obtain the initial reading right before the trial with
material in the cup, and the final reading right after the trial
with or without material in the cup depending on the trial.

We define the sensed force as

f =
√
f2x + f2y + f2z . (18)

In total we collected 1,138 trials which involves 3 subjects.
Each trial is represented by a sequence {at}Ti

t=1 where at ∈
R10 and

at =
[

θt rotation angle at time t (degree)
ft sensed force at time t (lbf)
finit sensed force before pouring (lbf)
fempty sensed force while cup is empty (lbf)
ffinal sensed force after pouring (lbf)
dcup diameter of the cup (mm)
hcup height of the cup (mm)
dctn diameter of the container (mm)
hctn height of the container (mm)
ρ material density / water density (unitless)

]
We pad all the sequences to the maximum length in the

data: Tmax = max({Ti}). For vel, we pad using zero
because zero padding makes it easy to compute the original
length of a sequence during training. For stp, we pad using
the end value of the sequence because stp is intended to be
used on generated motions which will not have zero padding.

In this work we aim to learn and test the system’s ability
to generalize to unseen pouring situations. Therefore, we
extract certain pouring situations from the data and use
them as the test set (Sec. IV provides the list of those
situations). We shuffle the rest of the data, which exclude
those pouring situations, using a fixed seed for the random
number generator. Then we use the first 80% of the shuffled
data for training and the rest 20% for validation. For training
and validation, the system applies Alg. 1 which uses the force
available in the data. For testing, the system applies Alg. 2
which generates the force by itself.
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We train using the Adam optimizer [25] and set the
learning rate to 0.01. We trained each system for a fixed
number of epochs: 4,000 for vel, and 2,000 for stp. The
training error for vel ranges from 0.002 to 0.005 (mm), and
the accuracy of stp ranges from 0.9 to 0.98.

A. Training Force Estimation

In order to run our approach in simulation, we need to
have force feedback after we have arrived at a new rotation.
Real force feedback is not applicable in simulation. The
movement of the liquid during pouring forms a complex
dynamical system and is difficult to calculate analytically.
Thus, to get force feedback, we decide to generate the force
by ourselves. To that end, we learn from data the mapping
relationship from rotation angles to force, and then use the
learned model to estimate the force corresponding to current
rotation.

Thus, we need to train a new system. We refer to the
system that estimates the sensed force from rotation as frc,
shown as (left) in Fig. 2. At step t, frc takes [θt, z]

> as
input, and produces estimated force f̂t:

ht = LSTM([θt, z]
>) (19)

f̂t = fc(ht) (20)

The loss is defined using Euclidean distance:

Lfrc =
1

n

n∑
i=1

1

Ti

Ti∑
t=1

(f
(i)
t − f̂

(i)
t )2. (21)

The initialization of frc includes

c0 = fc([θ1, z]>), (22)
h0 = tanh(c0), (23)

as shown in Fig. 3.
The data preparation for frc uses zero padding. We train

the frc with a fixed 2000 epochs, and the error ranges
between 0.002 to 0.003 (lbf).

With frc, the trajectory generation process needs modifi-
cation. Force can no longer be assumed to be available, but
must be produced explicitly by frc. The modified trajectory
generation process is shown in Alg. 2.

IV. EXPERIMENT ON GENERALIZATION

We evaluate the generalization ability of the system and
see if it can generate pouring motion in unseen situations.
Given a test sequence, we extract θ1 and z, and generate
a sequence using Alg. 2. The evaluation is conducted in
simulation.

We test the system using unseen
1) cup,
2) container,
3) material,
4) cup and container,
5) container and material,
6) cup and material,
7) cup and container and material.

Algorithm 2 Trajectory generation for simulation
1: Initialize frc using [θ1, z]

>

2: f1 ← frc([θ1, z]>)
3: Initialize vel and stp using [θ1, f1, z]

>

4: t← 1
5: while t < Tmax do
6: ωt ← vel([θt, ft, z]>)
7: θt+1 ← θt + ωt

8: s← argmax stp([θt, ft, z]>)
9: ft+1 ← frc([θt+1, z]

>)
10: t← t+ 1
11: if s == 1 then
12: Break
13: end if
14: end while

A. Identifying success

We evaluate the generalization ability of the pouring sys-
tem using dynamic time warping (DTW) [26], which gives
the minimum normalized distance between two trajectories.

We provide a set of test sequence which include an
element that is unseen during training and see if the system
is able to adapt to the changes. Let the set of test sequences
be {xi}mi=1. We first compute the distance between each pair
of test sequences and draw a histogram:

h1 = hist({dtw(xi, xj)}i 6=j) i, j = 1, 2, . . . ,m. (24)

Each xi can be used to generate a new trajectory x′i. We
compute the distance between x′i and every test sequence xj
and draw another histogram.

h2 = hist({dtw(x′i, xj)}) i, j = 1, 2, . . . ,m. (25)

Both histograms are normalized. We visually compare the
similarity between h1 and h2. If they are similar, then it
means the generated trajectories are similar to the trajectories
executed by humans, which identifies that the generalization
succeeds. The system fails to generalize if otherwise.

B. Results

The results for the seven cases of unseen elements of the
pouring characteristics are shown in Fig. 5 to 11. General-
ization on cup, or container, or material alone is successful
because the pairing histograms are similar (Fig. 5, 6 and 7).
Generalizing on cup and container (Fig. 8) and container and
material (Fig. 9) can be considered successful because of the
similarity in the concentration of the small-distances, despite
the difference on mid to high-valued distance parts, which
occupy only a small portion of all the distances. Generalizing
on cup and material fails as well as on cup and container
and materials, as shown in Fig. 10 and Fig. 11. For cup and
container and material, only 8 test sequences are available,
which may partly contribute to the difference between the
two histograms.
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Fig. 5. Generalizing on an unseen cup.

Fig. 6. Generalizing on an unseen container

V. DISCUSSION

We have presented an approach of generating pouring
trajectories by learning from pouring motions demonstrated
by human subjects. The approach uses force feedback from
the cup to determine the future velocity of pouring. We
aim to make the system generalize its learned knowledge to
unseen situations. The system successfully generalize when
either a cup, a container, or the material changes, and starts
to stumble when changes of more than one element are
present. Since the total size of data does not change, the
more that is left out for testing (more unseen elements), the
less there is available for training. Thus, the system accepts
weaker training and after which faces more demanding
challenges. The observed results of degrading performance
with increasing generalization difficulty is expected.

We have started evaluating the system on an industrial
robot that is equipped with a force sensor. The evaluation is
still under way. Future work includes finishing the evaluation
on the industrial robot, designing a quantitative measure that
measures the degree of success of a generated trajectory,
which could be similar to the distance measures in [27], [28].
We also plan to modify the architecture to emphasize the role
of initial and final force, and getting help from reinforcement
learning.

Fig. 7. Generalizing on an unseen material

Fig. 8. Generalizing on an unseen cup and container
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