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Task-Oriented Grasp Planning Based on
Disturbance Distribution

Yun Lin and Yu Sun

Abstract One difficulty of task-oriented grasp planning is task mouglIn this
paper, a manipulation task was modeled by building a noamatric statistical
distribution model from disturbance data captured duriegndnstrations. This pa-
per proposes a task-oriented grasp quality criterion basedistribution of task
disturbance and uses the criterion to search for a grasgakats the most signif-
icant part of the disturbance distribution. To reduce thepuotational complexity
of the search in a high-dimensional robotic hand configonatipace, as well as
to avoid a correspondence problem, the candidate grasgoamguted from a re-
duced configuration space that is confined by a set of givemlipiacements and
thumb directions. The proposed approach has been validdteda Barrett hand
and a Shadow hand on several objects in simulation. Thetirgggrasps in the
evaluation generated by our approach increase the covefégegjuently-occurring
disturbance rather than the coverage of a large area witateesed distribution.

1 Introduction

Manipulation and grasp have been active research topicbuotics. One of the pri-
mary goals of the research is the choice of an appropriatgpga terms of task
requirement and stability properties, given an object @éased with a manipula-
tion task to be performed [1]. Such a problem is referred tthagyrasp synthesis
problem. To solve this problem, different approaches agdriahms have been de-
veloped for the robotic hand to execute a stable manipulasisk.
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One solution to grasp synthesis problem is grasp planningsfiplanning uses
optimization mathematics to search for the optimal conpéxtement on an object,
which gives rise to difficulty in choosing a quality critemidor the optimization
procedure. One widely-used quality criterion is the foctesure property, which
measures the capability of a grasp to apply appropriate$oon an object to resist
disturbances in any direction, defined as the radius of tige$a six-dimensional
wrench space sphere centered at the origin and enclosetheitit grasp wrench
space [2]. Related research was developed in [3, 4, 5, 6] Neteertheless, they
are task-independent, in which an evenly distributed distace in all directions is
assumed.

In many manipulation tasks, however, such as drinking,ingiaind handling a
screwdriver, a task-related grasp criterion has to be egtir the choice of appro-
priate grasp configurations for different task requireragAttypical task-oriented
grasp method is to choose a suitable task wrench space (TVdShan measure
how good a task wrench space can be fitted into a grasp wreach g 7, 8, 9, 10].
Few works have considered the task information in graspnohgndue to the dif-
ficulty of modeling a task [7, 9, 11]. To obtain the task wrersglace in reality,
necessary sensors are required to measure the contactsegio contact normals,
which remains a challenge. This is the main reason why mosdtsxampirically ap-
proximate the task wrench space rather than actually meéstrstead of a wrench
space ball used in force-closure quality measure, Li anthy5@$ developed a qual-
ity criterion to measure the ability of a grasp to performsktewrench space using
a six-dimensional wrench space ellipsoid to better appnate a task. The research
in [10] approximated the task wrench space as a task poldngdocused on the
computation of task-oriented quality measures.

Pollard [4] proposed the object wrench space (OWS) that tHiesomplete
object geometry into consideration. The OWS integratesisiltbance wrenches
that can be exerted anywhere on the object. Borst et al. &jgmted an algorithm to
approximate the OWS by an ellipsoid and to measure how goo@W8g ellipsoid
can be fitted into a Grasp Wrench Space (GWS). The idea of OWSddHkgessible
disturbances into account, which is good for unknown tasikssmot task-specific;
for a specific task, a grasp does not need to perform the whai8 But to perform
the required subset TWS of the task wrench space.

Another difficulty of task-oriented grasp planning is thengutational complex-
ity of the searching in the high-dimensional hand configaraspace. It is, there-
fore, natural to introduce human experience relative tslafte?, 13, 14, 15, 16, 17].
Aleotti and Caselli [18] used data gloves to map human-handobotic-hand
workspace and captured the task wrench space in virtuatyredhey also con-
sidered a database of candidate grasps, and grasps weratedaby a task-related
quality measure. However, the correspondence problemées & crucial issue to
map between different configuration spaces of the human&adhthe robotic hand.
Research in [19] searched for candidate grasps by a shajegintaalgorithm and
evaluated the grasps by a task-oriented criterion. How#wesame modeling prob-
lem of the TWS still exists and the work also relies on empinigadeling.
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This paper proposes a grasp quality criterion, called thlecaverage grasp qual-
ity metric, to compute the proportion of task disturbana thgrasp covers. Instead
of assuming an evenly-distributed task wrench space, tipsoach takes into ac-
count the task disturbance distribution measured from Imoheanonstration, since it
is possible that disturbance wrenches in some directionisranore frequently than
in other areas, even if they may be smaller than wrenchesticat less frequently.
In two tool manipulations, for example, a knife and a fork éaimilar shapes but
have disturbance wrench distribution along differentatioms, hence favoring dif-
ferent grasps. Therefore, a targeted grasp is prone taaisiciggthe coverage of most
frequent disturbances, rather than a grasp with the sanerage of the area with
scattered distributed disturbance. To reduce the compngtcomplexity of the
search in high-dimensional robotic hand configuration spas well as to avoid a
correspondence problem, the candidate grasp is compuotacdfset of given thumb
placements rather than contact points ([20, 21, 22, 23,d3n object surface. One
advantage of thumb placement is that it is independent gshigsical constraints of
a given hand, which has the problem of solving the inverserkitics that satisfies
the constraints imposed by contact points [25]. Every thptabement is associated
with the direction thumb should point to, which further reduhe search space of
wrist positions and orientations.

2 Grasp Analysis
2.1 Grasp Preliminaries

Considering a multi-fingered robotic hand grasping an dbgagrasp comprises
multiple contact points. Assuming a hard finger model of tresp [26], i.e., point
contact with friction (PCWF), the most common friction modelCoulomb’s fric-
tion model; at each local contact, the tangential force isnded by the normal
force, f' < uf", wheref! is the tangential force componeiit! is the normal force
component, angl is the coefficient of friction. Thus, all feasible contactdes are
constrained to the friction cone. The friction has a vertetha contact point, and
the axis is along the contact normal, with an opening angReasf 1. For the con-
venience of computation, the circular friction cone is Ulyugpproximated with an
m-sided pyramid. Then, any contact forGet theit" contact that is within the con-
straint of friction cone can be represented as a convex auatibn of them force
vectors on the boundary of the cone:

m
fi ~ Z aj fij ()
j=1
where coefficientrj > 0, andy’; aj = 1.

The 3-d force vectof; and torque vector; can be written as a wrenaty. Each
contact can be described with a six-dimensional vector efwainw;:
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= [n —A (fidi x fi)] @

whered; is the vector from global origin of the object to the contaginp andA is
the scale factor of torque to force conversiancan be set to be the inverse of the
maximum radius from the torque origin so that torque is irhefent of the object
scale [4].

Givenn contact points of a grasp, the unit GWS, writteWa&3), can be defined
as the linear combination of the unit wrench space at eactacon

mn mn

W(G) = {wjw= ;aiwi,ai >0, _;ai =1|w| =1} (3)

In other words, UGWS is the set of all possible resultant wnesdhat can be
applied to the object by all the contacts if applying unit miaigde of contact force,
i.e., the convex hull of the contact wrenches (Figure 1).

Fig. 1 The wrench space of a
grasp.

A typical way of evaluating grasp quality is to compute featesure, i.e., the
ability of a grasp to equilibrate external force and momentiy directions by
applying appropriate forces. It implies that if the origihtbe wrench space is in
the convex hull, then the grasp is force closure. Similahtdrasp wrench space,
a task can also be described as the space of disturbancehesetiat must be
applied to the object. Ferrari and Canny [3] quantified thedeclosure property by
the magnitude of the contact wrenches that can compengathstiurbance wrench
in the worst case. If no task-oriented information is preddo form a subset of the
whole space of wrenches, a typical task wrench space is a bOJya centered at
the wrench space origin, where external disturbance i®unlf weighted (Left of
Figure 2). The grasp quality is the reciprocal of the scakriarge the grasp wrench
space so that it contains the whole task wrench space:

Q(G) = P (4)

km(G) = min(k)[Thai € k-W(G), ()
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Scaled GWS

Fig. 2 Grasp quality mea-
sures for (left figure) task ball
represented by the dashed
circle, and (right figure) task
ellipsoid represented by the
dashed ellipse.

In other words, thé&mn(G) is the minimum magnitude of contact force in order
to be capable of resisting all task wrenches. The lakggis, the greater effort is
needed for a grasp to encounter the task wrench along theegtedikection. The
grasp planning is to find the maximu@(G), the reciprocal okn(G).

2.2 Measure of Task Wrench

The quality measure in Equ. 4 can also be used for differesht iequirements in-
stead of using a uniform ball. Related research has beenctedlin [4, 7, 8, 9, 10].
Li and Sastry [7] developed a quality criterion to measureahility of a grasp to
perform a task wrench space using a six-dimensional wrepatesellipsoid to bet-
ter approximate a task (Right of Figure 2). Although this mwea takes task require-
ment into account, they stated that the data acquisitioiffisudt, so it is challeng-
ing to model the task. As reviewed in the Introduction, winilest researchers focus
on the problems of defining the task wrench space quality hedrteasurements
of how good a grasp can be fitted into a task wrench space, fgwtaddress this
practical problem of how to measure the demonstrated taskahrspace. Perhaps
the only work that measures task wrench space from demdpstraas the one
conducted by Aleotti and Caselli [18]. In their work, the dmmstrated task wrench
space was estimated in simulation by mapping the captuned jpasture to virtual
reality, where a correspondence problem still exists duedamappings from real-
ity to virtual reality and demonstrated task wrench spasefnuman demonstration
to the robot.

Most of the works ([7, 10, 19]) relied on much experience tineste the task
wrench space by predicting the contact disturbance. Takivignanipulations such
as pen, screwdriver, scoop, fork, toothbrush, etc. for gtenthe contact distur-
bance is expected to be applied on the tip of those tools. Theeempirical task-
oriented disturbance wrench space is a friction cone apphiehe tip. The wrench
space is assumed to be uniformly distributed in the spaceeter, even if the dis-
turbance is applied to the same location of different taibls,disturbance wrench
can distribute unevenly over the whole task wrench spaceygacing a writing task
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and manipulation of a screwdriver, for instance, althougthlequire the grasp to
resist disturbance force applied to the tip, they have wiffedisturbance distribu-
tion. As illustrated in Figure 3 the comparison between a gt a screwdriver,
the disturbance distributions of them are different. Far writing task, the main
disturbance wrench of a writing task is the force pointedhi® tipper-left direc-
tion, and the torque generated along with the force. Heheegtasp wrench space
should be able to apply the opposite force to resist the riahce, which is dis-
tributed primarily in the right area of the friction cone shoin the figure; whereas
the main disturbance wrench of the screwdriver is the noforak to the surface
and the rotational friction around the principle axis of szeewdriver. Also, the ex-
pected disturbance force of the screwdriver is larger thandf the pen. Therefore,
different distributions of wrenches in a task wrench spaoaldresult in different
preferred grasps.

[y

Fig. 3 Disturbance distribution of two tasks. Left figure shows a writtagk with a pen; right
figure shows a screwing task with a screwdriver.

To measure the distribution of the disturbance wrench speeg@rovided a user
interface consisting of a haptic device Phantom Omni, arictaal reality environ-
ment. For each task, a user is asked to manipulate a tool th&@raptic device (see
Figure 4 for example). The haptic device provides the ustr avhaptic feedback of
the interaction force with the virtual environment. Thetwal reality environment
was developed based on Chai3D [27], an open source C+Hliftmacomputer hap-
tics, visualization, and interactive real-time simulatidt integrates C++ library of
Open Dynamic Engine (ODE) for collision detection and Opktfigrary for graph-
ical visualization. We integrated the QHull library to callate the convex Hull [28].
The collision force of the tool is captured in the environinafter each iteration.
The task wrench spac&\VS) is a set of all wrenches measured over time

TWS = {w(t) W(t) = We(t) +wn(t)} (6)
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wherew(t) is a wrench at time; w(t) is the contact wrench of the tool with the en-
vironment;w,(t) is non-contact wrench. The non-contact wrenglt) is an offset
wrench that includes forces not acting on the surface of bject, such as gravity
and other force generated by acceleration. Here, we cansitd gravity because
motion of the tool is assumed to be pseudo-static. Gravitgiisidered as the force
acting on the center of mass of the object. If the center okrsset as the torque
origin, the wrench compensated by the gravity is a wrench wétro torque. If no
contact occurs during the manipulation, only gravity isuieed to be compensated,
e.g., when lifting up a book on an open palm, where the tasketrstabilizes the
effect of gravity along a single direction. Note that theediron of the gravity dis-
turbance relative to the object coordinate frame is changiith the motion of the
object, e.g., when rotating a book by a hand, where the tashafr stabilizes the
effect of gravity along multiple directions.

Since the probability distribution model of disturbancam&nown, for each task,
we can build a non-parametric statistical distribution leé tlisturbance from the
dataset of TWS measured by demonstration. Then, to reduceotheutational
complexity, a smaller set of data points can be randomly &ainpased on the
non-parametric statistical distribution.

Fig. 4 A user interface for
demonstration. Left figure:
A haptic device, Phantom
OMNI, to manipulate a vir-
tual object. Right figure: the
virtual environment.

2.3 Quality Measure Based on Distribution of Task Disturbance

The quality metricky, in Equ. 4 measures how much effort a grasp needs to cover
the whole required task wrench space, which quantifies atr@nisin the worst
case that the robot should not drop the object. However, tiretwase constraint is
not always a real guarantee, given that we are modeling senteench space from
noisy data. Thus, a different quality metric is to be devetbfhat is insensitive to
noise.

Furthermore ky, does not take into account the distribution of a task wrench
space. Without considering distribution of a task, it cargtistinguish quality be-
tween two task wrenches of the same volume but with diffed@sitibutions. Con-
sider the scenario of two different GWS for the same TWS showidare 5. It
can be observed that the TWS has a higher distribution in thariea. GWS 1 and
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GWS 2 in Figure 5a and 5b have the same volume and the lsaritowever, GWS
1 has a higher ability than GWS 1 to apply forces that freqyesttur in the task,
shown in Figure 5(c).

WS Q

1| |

Qy (k) \ o
RN

! kO kml, k‘mZ

(a) (b) (c)
Q 01 Q2

1

Q1 (ko)
Q2 (ko)

1
Q1 (ko)
Q2 (ko)

1 ko Kmi Kma K

(d) (e)

Fig. 5 Comparison of quality measuf@ in different scenarios. (a), (b): two grasp wrenches for
the same task wrench space; (c): comparison of quality meaQuressus scal& between grasps
in (a) and (b) Q1 (ko) > Q2(ko), andkm = kmp; Figures (d) and (e) show the other two case®of
as a function of scalk case in (d)Q1(ko) > Q2(ko), andkm1 < kmp; case in (€)Q1 (ko) > Q2(ko),
andkm > knp.

Based on the above two reasons, we propose a new task-drignatep quality
metric that considers both TWS modeled from noisy data, alsas¢he distribution
of TWS. When developing a grasp quality measurement for taskeh distribu-
tion, we must consider the different capabilities alondedént directions to apply
forces. It is preferred that less effort is required of a grasapply forces along di-
rections where the disturbance force frequently happeamsidering the efficiency
of power consumption. The GWS is not necessary to cover théaAltw'S, because
less capability is required to apply forces for some forceations where force mag-
nitude is large but rarely occurs. Then some noisy outlieay tre excluded from
the GWS. Intuitively, the grasp quality can be defined as ttie o TWS that can
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be covered by the scaled GW§G), given a scal&. The set of task wrenches that
is in the scaled GWS is represented as:

W = {w(t)|w(t) e TWSNw(t) e k-W(G)} (7)
The grasp quality can be represented as:
_ W]

QG = TWS (8)

where|W| is the size of the task wrenches covered by the scaled GWSTavig|
is the size of total task wrenches;<0Q(G) < 1. The largerQ(G) is, the more
disturbance wrenches can be resisted by the grasp G. Ther#fe grasp planning
is to find the optimal grasp that maximiz€$G).

It is noted that ak increases(Q is not linearly increasing with, and the in-
creasing rate of) is not the same for different grasps (Figure 5(c)-(e)). €fae,
the choice ok affects the result of the optimal grasp. Figure 5(c) comparelity
Q1 andQ; of the two grasps G1 and G2 shown in Figure 5(a) and Figureds(Ia)
function ofk. It can be seen th&; increases faster at the beginning.lAsecomes
larger, the increasing @; is slowed down. For ak < km, Q1 > Q2. whenk > kpy,
Q1 = Q2 =1. Itis also possible that differe@ can intersect at some< ky, as
illustrated in Figure 5(e). Also, if choosing a very largdueaof k, Q of different
Gis equal to 1. Therefore, it is important to choose a readeriathat results in a
desiredQ.

Scalek stands for the amount of force the robotic hand is expecteapy.
We suggested a scakkg by considering both the capability of the robotic hand, as
well as task requirement. Suppose a unit vegistands for a fixed direction for
the disturbance wrenoh(t). Leta(t) = |lw(t)||, the magnitude ofv(t), so that the
disturbance wrench can be writtenwa&) = a(t)w(t). For a given task wrench set,
ko is determined by the smaller value between the maximum rhadgé(t) of all
wrenches in the task, and the maximum forces that can beealpipyji the robotic
hand — typically the capabilityynax Of robot motors, written as:

ko = min(max(a(t)), tax) (9)

forallt=1,..., T, whereT is the number of data samples. In this paper, we used
a Barrett hand for the experiment. The maximum finger forah@eBarrett hand is
20N, so we setunax = 20 in order to boundy. ko can also be set to other empirical
value, e.g. the amount of force that humans usually applyniraaipulation.
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2.4 Incorporation of Thumb Placement Constraint into Grasp
Planning

Since a number of anthropomorphic hands have a high numtsgoées of free-
dom (DOF) in order to be as dexterous as human hand, intnogwcmplexity to
the search in the optimization, much work has focused onigirgy constraints to
the search space in order to reduce the computational cgitypté the search in
high dimensional robotic hand configuration space, for edanimposing appropri-
ate contact points on the object (e.g. [20, 21, 22, 23, 24{g. donstraint on contact
points, however, is assumed to be independent of physicati@nts of a given
hand. It raises the problem of solving the inverse kinersatiat satisfies the con-
straints imposed by contact points [25]. In this paper dfaae, to avoid the problem
given rise by the constraints of contact points, the cantdigeasp is computed from
a set of given thumb placement on the object surface, as w#ikadirection thumb
should point to. Thumb positions offer a general refererfcén® body part to be
gripped; thumb direction provides a constraint on wristiffmss and orientations.
The constraint of thumb placement can be labeled manualligenbject, or gener-
ated automatically from examples.

Fig. 6 lllustration of searching procedure constrained by the thurabgpand direction. The col-
ored area in the first figure is the area where the thumb is allowbd placed. Thumb placement
in red-colored area can only be pointed to axis X, while thufabgment in green-colored area can
only be pointed to axis y.

The upper-left of Figure 6 shows an example of labeled arka.tiumb can be
placed only on the colored area, with different colors dyew different thumb
directions. Thumb placement in the red-colored area carolegal only to axis X,
while thumb placement in green-colored area can be pointgdto axis y. Thumb
pose together provide partial constraints to wrist pos#iorientations; hence, they
reduce the search space during the optimization procefiwmesover, since the
thumb position of the robot is directly translated from therhb position of the
human demonstrator, no mapping between the two very difféiaematic systems
is required, which avoids the complicated correspondemcblgm. The user can
also specify a grasp type, such as power grasp and precisgasp §29], to better
satisfy the task requirement. Figure 6 shows snapshotsedralsing procedure of
a power grasp throughout the constraint area of thumb plesem



Task-Oriented Grasp Planning Based on Disturbance Distribution 11

3 Results

In the experiment, we tested our approach for several tagksdiiferent objects.
Non-expert subjects were asked to manipulate an objecterusier interface via
Phantom OMNI. The interaction force between the object Arcehvironment was
captured during the demonstration with a sample rate of 100'He data set of the
disturbance, compensated by object gravity, was recoittegh, from the data set,
a non-parametric statistical distribution of the disturt@was built. To reduce the
computational complexity, a smaller set of data points vaslomly sampled based
on the non-parametric statistical distribution.

A Barrett hand model and a Shadow hand model were testedgdinénsimula-
tion for task-oriented grasp planning. The desired gragp &nd the constraint area
of the thumb location and direction were input into the siaait as well, which
highly reduce the search space of the robotic hand configardh the simulation,
we set the friction coefficientt to be 1. The friction cone is approximated by an
eight-sided pyramid. For each hand configuration, the gwagmch space can be
computed from the contact points and contact normals cattaéne@d by the open
dynamics library. Grasp qualit® was calculated based on the grasp wrench space
and the distribution of disturbance. The grasp planningches the best grasp con-
figuration that maximize®.

Figure 7 to Figure 9 show three examples of object manipuiatin the first
example, the user was asked to perform a writing motion wiplerzcil, where the
pencil interacts with the environment at the tip. The chagasp should be excellent
for balancing the pressure and friction at the tip. As showfigure 7(a)-(c) the
distribution of task wrenches, task wrenches are biasetid@ositive directions
of Fy and Fz, other than the full space of the friction conee Tlsulting grasp
is, therefore, close to the tip. For the hand configuratimwshin Figure 7(d)Q =
0.8459 atk = 2.6, meaning it covers 84.59% of task wrenches, which is mugfeta
than that of Figure 7(e) whef@ = 0.1968 at the samle because it is better to apply
force along the Fy and Fz directions than that in Figure 7{b& quality measures
Q1 andQ2 changing with scalk for the two grasps are compared in Figure 7(f).

In the second experiment, grasps for two tasks were comgaredknife. The
user was asked to perform two tasks: a cutting motion alorey direction (+x
marked by red color in Figure 8); and a butter spreading matising both sides
of the blade. The disturbance distributions for the two $eeste reported in Figure
8(a)-(d). As shown the cutting task in Figure 8(a), a graspukhbe able to gener-
ate pressure along -z direction and friction mainly alongdirection to the blade.
Torque generated along with the force is shown in Figure. 8iile for the butter
spreading task shown in Figure 8(c) and (d), the task wrencbeer partial area of
two opposite friction cone, i.e. the grasp should be abl@pbygpressure along both
+y and -y, and friction along +z. The thumb placement is a@irst to the handle.
Figure 8(e)-(g) contains evaluations of three grasps ferttvo tasks respectively
(Q1 for cutting task andQ2 butter spreading task). For cutting task, where skale
is set to be 8.04, larger thdn= 3.25 for butter spreading task. It can be seen that
for cutting task, the hand configuration in Figure 8(e) iddretb apply force in -Fz,



12 Yun Lin and Yu Sun

Fig. 7 Planning results for a writing task with a pencil. The centemafss is set to be the origin
of the coordinate frame, where axes x, y and z are marked by reeh gnd blue colors (shown in
Figure (d)). (a)-(c): distribution of task wrench projected=x-Fy, Fx-Fz, Ty-Tz subspace, respec-
tively, where the task wrench is distributed mainly along -FxaRd Fz directions; torque Tz is
small so it is not reported here. (d)-(e): two different handfigumations; (f) Grasp qualit® ver-
sus scalé for the two hand configurations (Q1 and Q2 are quality measordsahd configuration
in (d) and (e)).

along with -Ty. The hand configuration in Figure 8(g) has tleest/quality measure
of the three due to its deficient ability to apply force alordjrections; Whereas for
the butter spreading task, hand configuration in Figure &(t))e best, and Figure
8(e) is the worst.

In the third task, the user was asked to strike a plane withnanter, and the
grasp planning was performed to compare results of the B&and model and the
Shadow hand model. It can be imagined that the chosen grasidgbe excellent
for balancing the large pressure on the head of the hammehdaven in Figure 9(a)-
(b), the distribution covers almost the whole space of tietidin cone, whose axis is
along +z direction, and the pressure between the hammeharmshvironment along
+z direction is as large as RO The designated grasp type during grasp planning is a
power grasp in order to perform powerful manipulation; tbalsk of grasp wrench
space is set to be 20 for the computation of quality measugeuré 9 show the
results of searching through the feasible area of thumbepiaat for the Barrett
hand model (Figure 9 (c)-(g)), and for the Shadow hand mdeglge 9(h)-(k)). It
can be seen that the grasp closer to the head is better toecbalaince the forces
that occur at the head. Note that the result of a hammer gsadfiférent from
the intuitive grasping style of humans, who prefer to holel tlandle on the other
side away from the head, because humans desire to reacheaslangg motion
with a relatively small arm motion but to generate a largeaontdorce. The grasp
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(e) (f) (9)

Fig. 8 Planning results for a cutting task and a butter spreading tabkanknife. (a)-(b): cutting
task distribution of task wrenches projected to Fx-Fy-Fz andl§i{z subspaces respectively,
where the task wrenches are distributed mainly in -Fz and Fx(d{c)the corresponding task
wrench distribution for butter spreading task, where the taginalies are distributed primarily in
+Fy, -Fy, +Fz, +Tz, -Tz; (e) -(9): three different hand configtions. Q1 is quality measure for the
first task, and Q2 is the quality measure for the second task. Bisiset to be 8.04 and 3.25 of
the two tasks for a precision grasp planning.

optimization considers only the ability to apply force atligan the arm and wrist
motions. It can be observed from the figure that similar tesuére obtained for the
two hand models, because task distribution and thumb @insére independent of
hand mechanical structures.
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(d) (e) ® ()}

(h) 0] 0 (k)

Fig. 9 Planning results for a hammer, where a power grasp is searchedskeadarge power
is needed. (a)-(b): distribution of task wrenches projectefix-Fy-Fz and Tx-Ty-Tz subspace,
respectively, where the task wrenches are distributed mainfiziand Ty; (c)-(g): five different

hand configurations of the Barrett hand model; (h)-(k): foffiecent hand configurations of the
Barrett hand model. Scaleis set to be 20.

Concluded from the experiments, the resulting grasp withghdr grasp qual-
ity criterion tends to be more efficient to apply frequentlyecurring force, using
the same magnitude of resultant force as the low qualitypgithsis improving the
efficiency of power consumption.

4 Conclusion

For task-oriented grasp planning, manipulation tasks amvk to be difficult to
model. In this paper, a manipulation task was modeled byimglnon-parametric
statistical distribution of disturbance from demonstratilata. Instead of an evenly-
distributed task wrench space, it is possible that distutbavrenches in some di-
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rections occur more frequently than the other areas, evéreyf may be smaller
than wrenches that occur less frequently. In favor of grdlspsare able to apply
frequently-occurring forces, this paper proposes a tamated grasp quality cri-
terion based on the distribution of the task disturbancedwiputing the ratio of
disturbance a grasp covers.

To reduce the computational complexity of the search indlighensional robotic
hand configuration space, as well as to avoid a correspoad®oblem, the candi-
date grasp is computed from a set of given thumb placementhamab direction.
The experiment has been validated in simulation with a Banend and a Shadow
hand. Both the task model and the demonstration are indepénéflhand models,
so they can be used for other robotic hands.

The hammer example in simulation implies that the resultitmptic grasps may
be different from intuitive grasps of the humans, who coessia combination of
hand and arm motion as well as force required by a task. Towexeghcluding arm
and hand motion factors in a grasp planning can be a direofi@uture work.

Another potential improvement is to measure task wrencheth® real object.
Then demonstration can be performed on real objects rdtharih simulation, so
that the user can have more straightforward haptic feefiog the environment. In
addition, the TWS can also be updated during the robot exatutihich iteratively
improves the grasp planning.

Although the current evaluation was conducted in simutatichere a simplified
hard contact friction model was defined, the proposed taski@d grasp quality
metric can be extended to other friction models. In the fitvork, further evalua-
tions will be carried out on real objects and robot platforms
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