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Task-Oriented Grasp Planning Based on
Disturbance Distribution

Yun Lin and Yu Sun

Abstract One difficulty of task-oriented grasp planning is task modeling. In this
paper, a manipulation task was modeled by building a non-parametric statistical
distribution model from disturbance data captured during demonstrations. This pa-
per proposes a task-oriented grasp quality criterion basedon distribution of task
disturbance and uses the criterion to search for a grasp thatcovers the most signif-
icant part of the disturbance distribution. To reduce the computational complexity
of the search in a high-dimensional robotic hand configuration space, as well as
to avoid a correspondence problem, the candidate grasps arecomputed from a re-
duced configuration space that is confined by a set of given thumb placements and
thumb directions. The proposed approach has been validatedwith a Barrett hand
and a Shadow hand on several objects in simulation. The resulting grasps in the
evaluation generated by our approach increase the coverageof frequently-occurring
disturbance rather than the coverage of a large area with a scattered distribution.

1 Introduction

Manipulation and grasp have been active research topics in robotics. One of the pri-
mary goals of the research is the choice of an appropriate grasp, in terms of task
requirement and stability properties, given an object associated with a manipula-
tion task to be performed [1]. Such a problem is referred to asthe grasp synthesis
problem. To solve this problem, different approaches and algorithms have been de-
veloped for the robotic hand to execute a stable manipulation task.
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One solution to grasp synthesis problem is grasp planning. Grasp planning uses
optimization mathematics to search for the optimal contactplacement on an object,
which gives rise to difficulty in choosing a quality criterion for the optimization
procedure. One widely-used quality criterion is the force-closure property, which
measures the capability of a grasp to apply appropriate forces on an object to resist
disturbances in any direction, defined as the radius of the largest six-dimensional
wrench space sphere centered at the origin and enclosed withthe unit grasp wrench
space [2]. Related research was developed in [3, 4, 5, 6], etc. Nevertheless, they
are task-independent, in which an evenly distributed disturbance in all directions is
assumed.

In many manipulation tasks, however, such as drinking, writing and handling a
screwdriver, a task-related grasp criterion has to be applied for the choice of appro-
priate grasp configurations for different task requirements. A typical task-oriented
grasp method is to choose a suitable task wrench space (TWS) and then measure
how good a task wrench space can be fitted into a grasp wrench space [4, 7, 8, 9, 10].
Few works have considered the task information in grasp planning due to the dif-
ficulty of modeling a task [7, 9, 11]. To obtain the task wrenchspace in reality,
necessary sensors are required to measure the contact regions and contact normals,
which remains a challenge. This is the main reason why most works empirically ap-
proximate the task wrench space rather than actually measure it. Instead of a wrench
space ball used in force-closure quality measure, Li and Sastry [7] developed a qual-
ity criterion to measure the ability of a grasp to perform a task wrench space using
a six-dimensional wrench space ellipsoid to better approximate a task. The research
in [10] approximated the task wrench space as a task polytopeand focused on the
computation of task-oriented quality measures.

Pollard [4] proposed the object wrench space (OWS) that takesthe complete
object geometry into consideration. The OWS integrates all disturbance wrenches
that can be exerted anywhere on the object. Borst et al. [9] presented an algorithm to
approximate the OWS by an ellipsoid and to measure how good theOWS ellipsoid
can be fitted into a Grasp Wrench Space (GWS). The idea of OWS takesall possible
disturbances into account, which is good for unknown tasks but is not task-specific;
for a specific task, a grasp does not need to perform the whole OWS but to perform
the required subset TWS of the task wrench space.

Another difficulty of task-oriented grasp planning is the computational complex-
ity of the searching in the high-dimensional hand configuration space. It is, there-
fore, natural to introduce human experience relative to a task [12, 13, 14, 15, 16, 17].
Aleotti and Caselli [18] used data gloves to map human-hand to robotic-hand
workspace and captured the task wrench space in virtual reality. They also con-
sidered a database of candidate grasps, and grasps were evaluated by a task-related
quality measure. However, the correspondence problem has been a crucial issue to
map between different configuration spaces of the human handand the robotic hand.
Research in [19] searched for candidate grasps by a shape-matching algorithm and
evaluated the grasps by a task-oriented criterion. However, the same modeling prob-
lem of the TWS still exists and the work also relies on empirical modeling.
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This paper proposes a grasp quality criterion, called the task coverage grasp qual-
ity metric, to compute the proportion of task disturbance that a grasp covers. Instead
of assuming an evenly-distributed task wrench space, this approach takes into ac-
count the task disturbance distribution measured from human demonstration, since it
is possible that disturbance wrenches in some directions occur more frequently than
in other areas, even if they may be smaller than wrenches thatoccur less frequently.
In two tool manipulations, for example, a knife and a fork have similar shapes but
have disturbance wrench distribution along different directions, hence favoring dif-
ferent grasps. Therefore, a targeted grasp is prone to increasing the coverage of most
frequent disturbances, rather than a grasp with the same coverage of the area with
scattered distributed disturbance. To reduce the computational complexity of the
search in high-dimensional robotic hand configuration space, as well as to avoid a
correspondence problem, the candidate grasp is computed from a set of given thumb
placements rather than contact points ([20, 21, 22, 23, 24])on an object surface. One
advantage of thumb placement is that it is independent of thephysical constraints of
a given hand, which has the problem of solving the inverse kinematics that satisfies
the constraints imposed by contact points [25]. Every thumbplacement is associated
with the direction thumb should point to, which further reduce the search space of
wrist positions and orientations.

2 Grasp Analysis

2.1 Grasp Preliminaries

Considering a multi-fingered robotic hand grasping an object, a grasp comprises
multiple contact points. Assuming a hard finger model of the grasp [26], i.e., point
contact with friction (PCWF), the most common friction modelis Coulomb’s fric-
tion model; at each local contact, the tangential force is bounded by the normal
force, f t ≤ µ f n, where f t is the tangential force component,f n is the normal force
component, andµ is the coefficient of friction. Thus, all feasible contact forces are
constrained to the friction cone. The friction has a vertex at the contact point, and
the axis is along the contact normal, with an opening angle of2tan−1µ . For the con-
venience of computation, the circular friction cone is usually approximated with an
m-sided pyramid. Then, any contact forcefi at theith contact that is within the con-
straint of friction cone can be represented as a convex combination of them force
vectors on the boundary of the cone:

fi ≈
m

∑
j=1

α j fi j (1)

where coefficientα j ≥ 0, and∑m
j=1 α j = 1.

The 3-d force vectorfi and torque vectorτi can be written as a wrenchwi. Each
contact can be described with a six-dimensional vector of wrenchwi:
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wi =

[

fi

τi = λ (di × fi)

]

(2)

wheredi is the vector from global origin of the object to the contact point andλ is
the scale factor of torque to force conversion.λ can be set to be the inverse of the
maximum radius from the torque origin so that torque is independent of the object
scale [4].

Givenn contact points of a grasp, the unit GWS, written asW (G), can be defined
as the linear combination of the unit wrench space at each contact:

W (G) = {w|w =
mn

∑
i=1

αiwi,αi ≥ 0,
mn

∑
i=1

αi = 1, |wi|= 1} (3)

In other words, UGWS is the set of all possible resultant wrenches that can be
applied to the object by all the contacts if applying unit magnitude of contact force,
i.e., the convex hull of the contact wrenches (Figure 1).

Fig. 1 The wrench space of a
grasp.
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A typical way of evaluating grasp quality is to compute force-closure, i.e., the
ability of a grasp to equilibrate external force and moment in any directions by
applying appropriate forces. It implies that if the origin of the wrench space is in
the convex hull, then the grasp is force closure. Similar to the grasp wrench space,
a task can also be described as the space of disturbance wrenches that must be
applied to the object. Ferrari and Canny [3] quantified the force-closure property by
the magnitude of the contact wrenches that can compensate the disturbance wrench
in the worst case. If no task-oriented information is provided to form a subset of the
whole space of wrenches, a typical task wrench space is a 6D ball Tball centered at
the wrench space origin, where external disturbance is uniformly weighted (Left of
Figure 2). The grasp quality is the reciprocal of the scale toenlarge the grasp wrench
space so that it contains the whole task wrench space:

Q(G) =
1

km
(4)

km(G) = min(k)|Tball ∈ k ·W (G), (5)
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Fig. 2 Grasp quality mea-
sures for (left figure) task ball
represented by the dashed
circle, and (right figure) task
ellipsoid represented by the
dashed ellipse.
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In other words, thekm(G) is the minimum magnitude of contact force in order
to be capable of resisting all task wrenches. The largerkm is, the greater effort is
needed for a grasp to encounter the task wrench along the weakest direction. The
grasp planning is to find the maximumQ(G), the reciprocal ofkm(G).

2.2 Measure of Task Wrench

The quality measure in Equ. 4 can also be used for different task requirements in-
stead of using a uniform ball. Related research has been conducted in [4, 7, 8, 9, 10].
Li and Sastry [7] developed a quality criterion to measure the ability of a grasp to
perform a task wrench space using a six-dimensional wrench space ellipsoid to bet-
ter approximate a task (Right of Figure 2). Although this measure takes task require-
ment into account, they stated that the data acquisition is difficult, so it is challeng-
ing to model the task. As reviewed in the Introduction, whilemost researchers focus
on the problems of defining the task wrench space quality and the measurements
of how good a grasp can be fitted into a task wrench space, quitefew address this
practical problem of how to measure the demonstrated task wrench space. Perhaps
the only work that measures task wrench space from demonstration was the one
conducted by Aleotti and Caselli [18]. In their work, the demonstrated task wrench
space was estimated in simulation by mapping the captured hand posture to virtual
reality, where a correspondence problem still exists due totwo mappings from real-
ity to virtual reality and demonstrated task wrench space from human demonstration
to the robot.

Most of the works ([7, 10, 19]) relied on much experience to estimate the task
wrench space by predicting the contact disturbance. Takingtool manipulations such
as pen, screwdriver, scoop, fork, toothbrush, etc. for example, the contact distur-
bance is expected to be applied on the tip of those tools. Thenthe empirical task-
oriented disturbance wrench space is a friction cone applied to the tip. The wrench
space is assumed to be uniformly distributed in the space. However, even if the dis-
turbance is applied to the same location of different tools,the disturbance wrench
can distribute unevenly over the whole task wrench space. Comparing a writing task
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and manipulation of a screwdriver, for instance, although both require the grasp to
resist disturbance force applied to the tip, they have different disturbance distribu-
tion. As illustrated in Figure 3 the comparison between a penand a screwdriver,
the disturbance distributions of them are different. For the writing task, the main
disturbance wrench of a writing task is the force pointed to the upper-left direc-
tion, and the torque generated along with the force. Hence, the grasp wrench space
should be able to apply the opposite force to resist the disturbance, which is dis-
tributed primarily in the right area of the friction cone shown in the figure; whereas
the main disturbance wrench of the screwdriver is the normalforce to the surface
and the rotational friction around the principle axis of thescrewdriver. Also, the ex-
pected disturbance force of the screwdriver is larger than that of the pen. Therefore,
different distributions of wrenches in a task wrench space would result in different
preferred grasps.

Fig. 3 Disturbance distribution of two tasks. Left figure shows a writingtask with a pen; right
figure shows a screwing task with a screwdriver.

To measure the distribution of the disturbance wrench space, we provided a user
interface consisting of a haptic device Phantom Omni, and a virtual reality environ-
ment. For each task, a user is asked to manipulate a tool usingthe haptic device (see
Figure 4 for example). The haptic device provides the user with a haptic feedback of
the interaction force with the virtual environment. The virtual reality environment
was developed based on Chai3D [27], an open source C++ library for computer hap-
tics, visualization, and interactive real-time simulation. It integrates C++ library of
Open Dynamic Engine (ODE) for collision detection and OpenGL library for graph-
ical visualization. We integrated the QHull library to calculate the convex Hull [28].
The collision force of the tool is captured in the environment after each iteration.
The task wrench space (TWS) is a set of all wrenches measured over timet.

TWS = {w(t)|w(t) = wc(t)+wn(t)} (6)
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wherew(t) is a wrench at timet; wc(t) is the contact wrench of the tool with the en-
vironment;wn(t) is non-contact wrench. The non-contact wrenchwn(t) is an offset
wrench that includes forces not acting on the surface of the object, such as gravity
and other force generated by acceleration. Here, we consider only gravity because
motion of the tool is assumed to be pseudo-static. Gravity isconsidered as the force
acting on the center of mass of the object. If the center of mass is set as the torque
origin, the wrench compensated by the gravity is a wrench with zero torque. If no
contact occurs during the manipulation, only gravity is required to be compensated,
e.g., when lifting up a book on an open palm, where the task wrench stabilizes the
effect of gravity along a single direction. Note that the direction of the gravity dis-
turbance relative to the object coordinate frame is changing with the motion of the
object, e.g., when rotating a book by a hand, where the task wrench stabilizes the
effect of gravity along multiple directions.

Since the probability distribution model of disturbance isunknown, for each task,
we can build a non-parametric statistical distribution of the disturbance from the
dataset of TWS measured by demonstration. Then, to reduce thecomputational
complexity, a smaller set of data points can be randomly sampled based on the
non-parametric statistical distribution.

Fig. 4 A user interface for
demonstration. Left figure:
A haptic device, Phantom
OMNI, to manipulate a vir-
tual object. Right figure: the
virtual environment.

2.3 Quality Measure Based on Distribution of Task Disturbance

The quality metrickm in Equ. 4 measures how much effort a grasp needs to cover
the whole required task wrench space, which quantifies a constraint in the worst
case that the robot should not drop the object. However, the worst case constraint is
not always a real guarantee, given that we are modeling the task wrench space from
noisy data. Thus, a different quality metric is to be developed that is insensitive to
noise.

Furthermore,km does not take into account the distribution of a task wrench
space. Without considering distribution of a task, it cannot distinguish quality be-
tween two task wrenches of the same volume but with differentdistributions. Con-
sider the scenario of two different GWS for the same TWS shown inFigure 5. It
can be observed that the TWS has a higher distribution in the left area. GWS 1 and
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GWS 2 in Figure 5a and 5b have the same volume and the samekm. However, GWS
1 has a higher ability than GWS 1 to apply forces that frequently occur in the task,
shown in Figure 5(c).

TWS

GWS1 GWS2

k

1

(a) (b) (c)

1

k

1

(d)

k

1

(e)
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Fig. 5 Comparison of quality measureQ in different scenarios. (a), (b): two grasp wrenches for
the same task wrench space; (c): comparison of quality measuresQ versus scalek between grasps
in (a) and (b).Q1(k0)> Q2(k0), andkm1 = km2; Figures (d) and (e) show the other two cases ofQ
as a function of scalek: case in (d),Q1(k0)> Q2(k0), andkm1 < km2; case in (e):Q1(k0)> Q2(k0),
andkm1 > km2.

Based on the above two reasons, we propose a new task-oriented grasp quality
metric that considers both TWS modeled from noisy data, as well as the distribution
of TWS. When developing a grasp quality measurement for task-wrench distribu-
tion, we must consider the different capabilities along different directions to apply
forces. It is preferred that less effort is required of a grasp to apply forces along di-
rections where the disturbance force frequently happens, considering the efficiency
of power consumption. The GWS is not necessary to cover the whole TWS, because
less capability is required to apply forces for some force directions where force mag-
nitude is large but rarely occurs. Then some noisy outliers may be excluded from
the GWS. Intuitively, the grasp quality can be defined as the ratio of TWS that can
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be covered by the scaled GWSW (G), given a scalek. The set of task wrenches that
is in the scaled GWS is represented as:

W = {w(t)|w(t) ∈ TWS∩w(t) ∈ k ·W (G)} (7)

The grasp quality can be represented as:

Q(G) =
|W |

|TWS|
(8)

where|W | is the size of the task wrenches covered by the scaled GWS, and|TWS|
is the size of total task wrenches; 0≤ Q(G) ≤ 1. The largerQ(G) is, the more
disturbance wrenches can be resisted by the grasp G. Therefore, the grasp planning
is to find the optimal grasp that maximizesQ(G).

It is noted that ask increases,Q is not linearly increasing withk, and the in-
creasing rate ofQ is not the same for different grasps (Figure 5(c)-(e)). Therefore,
the choice ofk affects the result of the optimal grasp. Figure 5(c) compares quality
Q1 andQ2 of the two grasps G1 and G2 shown in Figure 5(a) and Figure 5(b)as a
function ofk. It can be seen thatQ1 increases faster at the beginning. Ask becomes
larger, the increasing ofQ1 is slowed down. For allk < km, Q1 > Q2. whenk ≥ km,
Q1 = Q2 = 1. It is also possible that differentQ can intersect at somek < km, as
illustrated in Figure 5(e). Also, if choosing a very large value of k, Q of different
G is equal to 1. Therefore, it is important to choose a reasonable k that results in a
desiredQ.

Scalek stands for the amount of force the robotic hand is expected toapply.
We suggested a scalek0 by considering both the capability of the robotic hand, as
well as task requirement. Suppose a unit vector ˆw stands for a fixed direction for
the disturbance wrenchw(t). Let a(t) = ‖w(t)‖, the magnitude ofw(t), so that the
disturbance wrench can be written asw(t) = a(t) ˆw(t). For a given task wrench set,
k0 is determined by the smaller value between the maximum magnitudea(t) of all
wrenches in the task, and the maximum forces that can be applied by the robotic
hand – typically the capabilityωmax of robot motors, written as:

k0 = min(max(a(t)),ωmax) (9)

for all t = 1, . . . ,T , whereT is the number of data samples. In this paper, we used
a Barrett hand for the experiment. The maximum finger force ofthe Barrett hand is
20N, so we setωmax = 20 in order to boundk0. k0 can also be set to other empirical
value, e.g. the amount of force that humans usually apply in amanipulation.
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2.4 Incorporation of Thumb Placement Constraint into Grasp
Planning

Since a number of anthropomorphic hands have a high number ofdegrees of free-
dom (DOF) in order to be as dexterous as human hand, introducing complexity to
the search in the optimization, much work has focused on providing constraints to
the search space in order to reduce the computational complexity of the search in
high dimensional robotic hand configuration space, for example, imposing appropri-
ate contact points on the object (e.g. [20, 21, 22, 23, 24]). The constraint on contact
points, however, is assumed to be independent of physical constraints of a given
hand. It raises the problem of solving the inverse kinematics that satisfies the con-
straints imposed by contact points [25]. In this paper, therefore, to avoid the problem
given rise by the constraints of contact points, the candidate grasp is computed from
a set of given thumb placement on the object surface, as well as the direction thumb
should point to. Thumb positions offer a general reference of the body part to be
gripped; thumb direction provides a constraint on wrist positions and orientations.
The constraint of thumb placement can be labeled manually onthe object, or gener-
ated automatically from examples.

x

y

z

Fig. 6 Illustration of searching procedure constrained by the thumb place and direction. The col-
ored area in the first figure is the area where the thumb is allowedto be placed. Thumb placement
in red-colored area can only be pointed to axis x, while thumb placement in green-colored area can
only be pointed to axis y.

The upper-left of Figure 6 shows an example of labeled area. The thumb can be
placed only on the colored area, with different colors specifying different thumb
directions. Thumb placement in the red-colored area can be pointed only to axis x,
while thumb placement in green-colored area can be pointed only to axis y. Thumb
pose together provide partial constraints to wrist positions/orientations; hence, they
reduce the search space during the optimization procedure.Moreover, since the
thumb position of the robot is directly translated from the thumb position of the
human demonstrator, no mapping between the two very different kinematic systems
is required, which avoids the complicated correspondence problem. The user can
also specify a grasp type, such as power grasp and precision grasp [29], to better
satisfy the task requirement. Figure 6 shows snapshots of a searching procedure of
a power grasp throughout the constraint area of thumb placement.
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3 Results

In the experiment, we tested our approach for several tasks with different objects.
Non-expert subjects were asked to manipulate an object in the user interface via
Phantom OMNI. The interaction force between the object and the environment was
captured during the demonstration with a sample rate of 100 Hz. The data set of the
disturbance, compensated by object gravity, was recorded.Then, from the data set,
a non-parametric statistical distribution of the disturbance was built. To reduce the
computational complexity, a smaller set of data points was randomly sampled based
on the non-parametric statistical distribution.

A Barrett hand model and a Shadow hand model were tested during the simula-
tion for task-oriented grasp planning. The desired grasp type and the constraint area
of the thumb location and direction were input into the simulator as well, which
highly reduce the search space of the robotic hand configuration. In the simulation,
we set the friction coefficientµ to be 1. The friction cone is approximated by an
eight-sided pyramid. For each hand configuration, the graspwrench space can be
computed from the contact points and contact normals can be obtained by the open
dynamics library. Grasp qualityQ was calculated based on the grasp wrench space
and the distribution of disturbance. The grasp planning searches the best grasp con-
figuration that maximizesQ.

Figure 7 to Figure 9 show three examples of object manipulation. In the first
example, the user was asked to perform a writing motion with apencil, where the
pencil interacts with the environment at the tip. The chosengrasp should be excellent
for balancing the pressure and friction at the tip. As shown in Figure 7(a)-(c) the
distribution of task wrenches, task wrenches are biased to the positive directions
of Fy and Fz, other than the full space of the friction cone. The resulting grasp
is, therefore, close to the tip. For the hand configuration shown in Figure 7(d),Q =
0.8459 atk = 2.6, meaning it covers 84.59% of task wrenches, which is much larger
than that of Figure 7(e) whereQ = 0.1968 at the samek, because it is better to apply
force along the Fy and Fz directions than that in Figure 7(e).The quality measures
Q1 andQ2 changing with scalek for the two grasps are compared in Figure 7(f).

In the second experiment, grasps for two tasks were comparedfor a knife. The
user was asked to perform two tasks: a cutting motion along one direction (+x
marked by red color in Figure 8); and a butter spreading motion using both sides
of the blade. The disturbance distributions for the two tasks are reported in Figure
8(a)-(d). As shown the cutting task in Figure 8(a), a grasp should be able to gener-
ate pressure along -z direction and friction mainly along +xdirection to the blade.
Torque generated along with the force is shown in Figure 8(b). While for the butter
spreading task shown in Figure 8(c) and (d), the task wrenches cover partial area of
two opposite friction cone, i.e. the grasp should be able to apply pressure along both
+y and -y, and friction along +z. The thumb placement is constraint to the handle.
Figure 8(e)-(g) contains evaluations of three grasps for the two tasks respectively
(Q1 for cutting task andQ2 butter spreading task). For cutting task, where scalek
is set to be 8.04, larger thank = 3.25 for butter spreading task. It can be seen that
for cutting task, the hand configuration in Figure 8(e) is better to apply force in -Fz,
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(a) (c)(b)

(d) (e) (f)

Q=0.8459 Q=0.1969

Fig. 7 Planning results for a writing task with a pencil. The center ofmass is set to be the origin
of the coordinate frame, where axes x, y and z are marked by red, green and blue colors (shown in
Figure (d)). (a)-(c): distribution of task wrench projected to Fx-Fy, Fx-Fz, Ty-Tz subspace, respec-
tively, where the task wrench is distributed mainly along -Fx, Fy and Fz directions; torque Tz is
small so it is not reported here. (d)-(e): two different hand configurations; (f) Grasp qualityQ ver-
sus scalek for the two hand configurations (Q1 and Q2 are quality measures for hand configuration
in (d) and (e)).

along with -Ty. The hand configuration in Figure 8(g) has the worst quality measure
of the three due to its deficient ability to apply force along zdirections; Whereas for
the butter spreading task, hand configuration in Figure 8(g)is the best, and Figure
8(e) is the worst.

In the third task, the user was asked to strike a plane with a hammer, and the
grasp planning was performed to compare results of the Barrett hand model and the
Shadow hand model. It can be imagined that the chosen grasp should be excellent
for balancing the large pressure on the head of the hammer. Asshown in Figure 9(a)-
(b), the distribution covers almost the whole space of the friction cone, whose axis is
along +z direction, and the pressure between the hammer and the environment along
+z direction is as large as 20N. The designated grasp type during grasp planning is a
power grasp in order to perform powerful manipulation; the scalek of grasp wrench
space is set to be 20 for the computation of quality measure. Figure 9 show the
results of searching through the feasible area of thumb placement for the Barrett
hand model (Figure 9 (c)-(g)), and for the Shadow hand model (Figure 9(h)-(k)). It
can be seen that the grasp closer to the head is better to counterbalance the forces
that occur at the head. Note that the result of a hammer grasp is different from
the intuitive grasping style of humans, who prefer to hold the handle on the other
side away from the head, because humans desire to reach a large swing motion
with a relatively small arm motion but to generate a large impact force. The grasp
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Fig. 8 Planning results for a cutting task and a butter spreading task with a knife. (a)-(b): cutting
task distribution of task wrenches projected to Fx-Fy-Fz and Tx-Ty-Tz subspaces respectively,
where the task wrenches are distributed mainly in -Fz and Fx; (c)-(d): the corresponding task
wrench distribution for butter spreading task, where the task wrenches are distributed primarily in
+Fy, -Fy, +Fz, +Tz, -Tz; (e) -(g): three different hand configurations. Q1 is quality measure for the
first task, and Q2 is the quality measure for the second task. Scalek is set to be 8.04 and 3.25 of
the two tasks for a precision grasp planning.

optimization considers only the ability to apply force other than the arm and wrist
motions. It can be observed from the figure that similar results were obtained for the
two hand models, because task distribution and thumb constraint are independent of
hand mechanical structures.
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Fig. 9 Planning results for a hammer, where a power grasp is searched because a large power
is needed. (a)-(b): distribution of task wrenches projected to Fx-Fy-Fz and Tx-Ty-Tz subspace,
respectively, where the task wrenches are distributed mainly inFz and Ty; (c)-(g): five different
hand configurations of the Barrett hand model; (h)-(k): four different hand configurations of the
Barrett hand model. Scalek is set to be 20.

Concluded from the experiments, the resulting grasp with a higher grasp qual-
ity criterion tends to be more efficient to apply frequently-occurring force, using
the same magnitude of resultant force as the low quality grasp, thus improving the
efficiency of power consumption.

4 Conclusion

For task-oriented grasp planning, manipulation tasks are known to be difficult to
model. In this paper, a manipulation task was modeled by building non-parametric
statistical distribution of disturbance from demonstration data. Instead of an evenly-
distributed task wrench space, it is possible that disturbance wrenches in some di-
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rections occur more frequently than the other areas, even ifthey may be smaller
than wrenches that occur less frequently. In favor of graspsthat are able to apply
frequently-occurring forces, this paper proposes a task-oriented grasp quality cri-
terion based on the distribution of the task disturbance by computing the ratio of
disturbance a grasp covers.

To reduce the computational complexity of the search in high-dimensional robotic
hand configuration space, as well as to avoid a correspondence problem, the candi-
date grasp is computed from a set of given thumb placement andthumb direction.
The experiment has been validated in simulation with a Barrett hand and a Shadow
hand. Both the task model and the demonstration are independent of hand models,
so they can be used for other robotic hands.

The hammer example in simulation implies that the resultingrobotic grasps may
be different from intuitive grasps of the humans, who consider a combination of
hand and arm motion as well as force required by a task. Therefore, including arm
and hand motion factors in a grasp planning can be a directionof future work.

Another potential improvement is to measure task wrenches on the real object.
Then demonstration can be performed on real objects rather than in simulation, so
that the user can have more straightforward haptic feeling from the environment. In
addition, the TWS can also be updated during the robot execution, which iteratively
improves the grasp planning.

Although the current evaluation was conducted in simulation, where a simplified
hard contact friction model was defined, the proposed task-oriented grasp quality
metric can be extended to other friction models. In the future work, further evalua-
tions will be carried out on real objects and robot platforms.
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