
Chapter 5
Modeling Paired Objects and Their Interaction

Yu Sun and Yun Lin

5.1 Introduction

Object categorization and human action recognition are two important capabilities
for an intelligent robot. Traditionally, they are treated separately. Recently, more
researchers started to model the object features, object affordance, and human action
at the same time. Most of the works build a relation model between single object
features and human action or object affordance and uses the models to improve
object recognition accuracies [16, 21, 12].

In our daily life, it is natural that we not only pay our attentions to the objects
we hold and manipulate, but also the interactive relationship between the objects.
We also select our motions according to the intended interaction we want, which
is mostly defined by both objects. For example, when a person holds a pen, there
could be many different kinds of motions. However, if the pen is associated to a
piece of paper, the human motion with the pen is significantly confined. Most likely,
a writing motion will occur. Likewise, if we want to detect the type of object in a
human hand, and we have detected a human writing motion and a piece of paper, we
have more confidence to believe that the object is a pen than without detecting the
writing motion or the paper. There are many similar examples such as a book and a
schoolbag, and a teapot and a cup. The interactive motions performed by the humans
have strong relationship with both objects. Therefore, the motion information can
enhance our belief of the recognition results of the objects. If we can detect a stirring
motion and recognize a cup, we can enhance our belief that the object in the human’s
hand is a spoon. Figure 5.1 shows several objects on a table that have inter-object
relationship: a CD and a CD case, a pen and a piece of paper, a spoon and a cup,
and a cup and a teapot.
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Fig. 5.1 Several objects on a table have inter-object relationships: pen-paper, teapot-cup, cup-
spoon, CD-CD case

The connection between the visual recognition and motor action has been stud-
ied in neuroscience and cognitive science recently. The concept of objects’ affor-
dance has been around since 1977 [14]. Only lately studies on objects’ affordance
[28, 29, 24] indicated that the mirror neurons in human brains congregated visual
and motor responses. In the studies, the researchers found that mirror neurons in the
F5 sector of the macaque ventral premotor cortex fired both during observation of
interacting with an object and during action execution, but did not discharge in re-
sponse to simply observing an object [9, 13]. More close to the human-object-object
interaction affordance idea, Yoon et al. [32] studied the affordances associated to
pairs of objects positioned for action and found an interesting so-called “paired ob-
ject affordance effect.” The effect was that the response time by right-handed par-
ticipants was faster if the two objects were used together when the active object
(supposed to be manipulated) was to the right of the other object. Borghi et al. [3]
further studied the functional relationship between paired objects and compared it
with the spatial relationship and found that both the position and functional context
were important and related to the motion; however, the motor action response was
faster and more accurate with the functional context than the spatial context. The
study results in neuroscience and cognitive science indicate that there are strong
connections between the observation and the motion, and functional relationships
between objects are directly associated with the motor actions.

Based on the new findings in neuroscience and cognitive science, we propose to
link a pair of objects with their interaction motion directly and we call the interaction
motion instead of the functionalities of the object as the inter-object affordance. In
this chapter, we attempt to capitalize the strong relationship between paired objects
and interactive motion by building an object relation model and associating it to
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human action model in the human-object-object way to characterize inter-object
affordance.

In robotics and related fields, object affordance has only been explored recently
in limited works that mainly model the object affordance with the interaction be-
tween single object and a human user, and then use the mutual relation to improve
the recognition of each other. For example, Gupta and Davis [16] recently achieved
inspiring success in using single object action to improve the recognition rate of
both the object and human motion. Kjellstrom et. al. [21] used conditional random
field (CRF) and factorial conditional random field (FCRF) to model the relationship
between object type and human action, in which the 3D hand pose was estimated to
represent human action including open, hammer, and pour actions. Most recently,
Gall, et. al. [12] have recovered the human action from a set of depth images and
then represented object’s function and affordance with the human action. In their
work, objects were classified according to the involved human action in an unsuper-
vised way base on high-level features.

Another recent approach in literature is to derive the objects’ affordance from
their low level features or 3D shapes. Stark et. al. [30] obtained the object affor-
dance cues from human hand and object interaction in the training images, and then
they detected an object and determine the objects functions according to the objects
affordance cue features. Grabner et. al. [15] proposed a novel way to determine
object affordance using computer graphical simulation. The system ’imagines’ or
simulates an actor performing actions on the objects to compute the objects affor-
dances from the object’s 3D shape.

In robotics community, there are several existing works on obtaining and us-
ing object-action relation. In [1], objects were categorized solely according to ob-
ject interaction sequences (motion features), but the geometry appearance features
of the objects was not considered. First, the objects were segmented out from the
background in a number of video sequences, then the space interaction relationship
between objects were represented with an undirected semantic graph. Their work
was able to represent the object temporal and spatial interactions in an event with a
sequence of such graphs.

In summary, most of the existing works focus on object-action interaction, or ob-
ject geometry-related affordance features. This chapter based on our previous publi-
cations [27, 31], introduces our new works on modeling the affordance relationship
between objects for object recognition and presents a way to model the inter-object
affordance, and then use the inter-object affordance relationship to improve object
recognition.

In this chapter, we describe a design of a graphical model that composes of two
objects and the human motions that relate both objects. The graphical model con-
tains the inter-object affordance that can be learned to represent the interaction re-
lationship between paired objects, such as teapot-cup, and pen-paper. A Bayesian
Network is structured to integrate the paired objects, their interaction, and the con-
sequence of the object interaction. After the description of the Bayesian Network
graphical model, we introduce an approach to recognize the paired objects by ana-
lyzing and classifying the interactive motions with the statistical knowledge learned
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Fig. 5.2 The workflow of building the human-object-object interaction model starts with ob-
ject detection, human hand tracking, and object reaction estimation. In the end the likelihoods
are used to build a Bayesian inference network.

from training data. In addition, at the end of the chapter, we extend this approach
to leverage the object recognition accuracy from videos with the interactive motion
recognition and demonstrate the benefit of the approach with results in several ex-
periments, which show that the detection accuracy of the interactive objects was
significantly improved with the introduced approach.

5.2 Human-Object-Object-Interaction Modeling

The workflow to build the human-object-object interaction model is illustrated in
Figure 5.2. First, the initial likelihood of the objects’ manipulation and reaction is
computed. The object initial likelihoods were estimated with a sliding window ob-
ject detector, which is based on the Histogram of Oriented Gradients (HoG). The
initial likelihood of human action is estimated based on the feature of human hand
motion trajectory. The human hand was tracked in the whole process, and the hand
motion was segmented according to the velocity changing. With motion segmenta-
tion and possible object locations, the interactive object pairs were detected in the
step of key reach motion detection. The start time of the manipulation was estimated
based on the object pair locations and hand motion trajectory. Then, the initial belief
of the manipulation was computed.

Object interaction usually leads to a state change of the associated objects. For
example, if a CD is put into a CD case, the color of the CD case probably will
change. The likelihood of object reaction was estimated by comparing with the
training datasets. Finally, the belief in each node was updated with the inference
algorithm for Bayesian Networks.
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Fig. 5.3 The Bayesian network model used to represent objects, actions and object interac-
tions. O1 and O2 represent the two interacting objects, A denotes hand manipulation motion,
and OR is the object reaction.

5.2.1 Bayesian Network Model for HOO Interaction

P(O1,O2,A,OR|e) ∝ P(O1|eO1)P(O2|eO2) (5.1)

P(A|O1,O2)P(A|eA)

P(OR|O1,O2,A)P(OR|eOR)

Bayesian network is chosen to model the HOO interaction because it is a powerful
inference tool for decision making in the observation of several or many interrelated
factors. As illustrated in Figure 5.3, the Bayesian network introduced here has eight
nodes. The two interactive objects are represented as node O1 and node O2. Node A
denotes hand manipulation action, also represents the inter-object affordance. The
node OR represents the object reaction that reflects the change of object state after
the interaction. The rest notes are the evidences e = {eO1 ,eO2 ,eA,eOR}, and they
represent the evidence for O1, O2, A, and OR respectively. The nodes are connected
according to their conditional dependencies. Since node A is determined by the two
interacting objects (O1 and O2), they are the parents of node A. Similarly, since
the object reaction is the consequence of the two objects and the manipulation, it
is the child of those three nodes. The belief for each node can be updated with
the messages from the corresponding evidence node. According to the Bayesian
rule and conditional independence relations, the joint probability distribution of the
paired objects, inter-action, and reaction can be represented with Equation 5.1.

The Bayesian network model can be scaled up by increasing the number of vari-
ables for object and action in each node without changing the graphical model
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structure. Alternatively, we can combine multiple Bayesian networks to form a
large-scale graphical model if there are inter-connections between different pairs
of objects.

5.2.2 Object Detection

To estimate the initial likelihood of the objects, a detector similar to [7] was de-
signed. The detector works in the sliding window manner, and uses a variant of the
HoG feature from [10] to represent the object local features. At each pixel, the color
channel with the largest gradient magnitude was used to represent the gradient ori-
entation and magnitude. In each detecting window, the image was divided into 8x8
pixel cells and, for each cell, the pixel level feature was aggregated to a feature map.

Objects were modeled as object type and object location. We computed the ob-
ject likelihoods:

P(O1 = {ob j1, lO1}|eO1) and
P(O2 = {ob j2, lO2}|eO2)

for each sliding window with the SVM estimation, in which lO1 is the location of
start object and lO2 is the location of the end object . Figure 5.4 shows a sample
of the detection results using training image images from the Image-Net [8] and
Google Image Search. All of the training images were labeled. For each object, 50
positive and 70 negative examples were used to train an SVM (Support Vector Ma-
chine) classifier. The window size and aspect ratio were learned from the training
data set. The LibSVM library [4] was used to obtain the probability of the classifi-
cation for each window.

Fig. 5.4 Example result of object detection with SVM classifier using HoG features. Dots
indicate detected object centers.
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5.2.3 Motion Analysis

The object detector in the previous section can only give us the possible object loca-
tions with their types. Since the inter-object affordance is represented by the object
interaction, that affordance should be modeled with motion features. To represent
the inter-object action – the affordance of the pair, it is necessary to detect and an-
alyze the hand motion that is associated with one of both of the objects. Here the
trajectories are segmented and the motion segments are used to represent and rec-
ognize the motion types. Generally, there are two kinds of object interactive motion
– putting an object into a container and manipulating one of the objects relative to
the other [18, 19]. In this chapter, these two kinds of motion are treated the same,
although they are considered different in cognition science.

5.2.3.1 Human Hand Tracking in 2D

It is difficult to track an arbitrary hand in a daily-living environment with various
background solely based on the hand’s shape as a hand can have many different
shapes for different gestures. To simplify the discussion, this chapter describe an
approach using the human skin color as tracking features since it is much more sta-
ble and has been used successfully in previous works [2]. In addition, the skin color
model in [5] and the TLD object tracker [20] are combined to build a stable hand
tracker. In this approach, the hands in the initial several frames are located using
optical flow and the skin color. Then for each additional frame, the hand location is
updated according to the color information around the previous hand location and
the shape features from TLD tracker. Figure 5.5(a) shows one example of the track-
ing result and the Figure 5.5(b) shows the tracked trajectory for a whole inter-action
motion – putting a CD into its case.

5.2.3.2 Motion Segmentation

From the tracked hand motion trajectory, motion features should be extracted to
represent the motion. Here, the obtained trajectories can then be segmented into
several pieces according to the velocity and represented with the motion features
in the segments. According to [26], there are two kinds of human limb motions:
ballistic motion and mass spring motion. In those two kinds of motions, the velocity
provides natural indications of the motion segments. The local minimal points in
their velocity curves are used to segment the trajectories, and then these small pieces
can be either merged or segmented further into possible ballistic and mass spring
segments. Similar to the method in [26], the segments are classified into ballistic
and mass sprint types according to their velocity features. The features used in this
chapter include the maximum velocity, average velocity, number of local minimum
point, standard deviation, and motion distance etc. Figure 5.5(c) shows the motion
segments in velocity for one motion that is putting a pencil into a pencil case. Similar
motion analysis approaches exist in neuroscience and cognitive science to classify
and represent motion segments with action chains [11, 17].
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(a) (b)

(c)

Fig. 5.5 Hand tracking and motion segmentation: (a) right-hand motion tracking; (b) right-
hand motion trajectory; (c) motion segmentation with velocity – horizontal axis is time (frame
number), and vertical axis represents velocity (pixels per frame). Red circles are detected
motion segment boundaries.

5.2.3.3 Key Reach Motion Detection

In each object interaction process, a human hand carries one object to the location
of another object. For example, in the stirring water example, a human hand carries
a spoon and moves it to the cup. This reach motion is called the key reach motion.
There could be several reach motions in one action. For example, in a process of
putting a book into a schoolbag, there are three reach motions. A person first opens
the schoolbag, the first reach motion; reach to the book, the second reach motion;
and then take the book to the schoolbag to put into it, the third reach motion. How-
ever, only the taking the book to the schoolbag is defined as the key reach motion
for this interaction as only this reach motion involves both objects. Therefore we
name the book as the start object and the schoolbag as the end object as object1 and
object2 respectively in the graphical model.

The ballistic segments are then further classified into reach motion and non-reach
motion according to motion features including the velocity during acceleration and
deceleration, time duration, average velocity, and stand deviation of the velocity.
However, it is difficult to segment out the key reach motion only based on the hand
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Fig. 5.6 Key reach motion detection: (a) red velocity segment represents key reach motion
in velocity graph. The red circles are detected motion segment boundaries; (b) The red curve
shows key reach motion in image.

motion and to detect if a hand is carrying object or not if the object is small. Instead,
we rely on the motion of the object since it is easy to detect the object state around
the start and end location of the reach motion. The key reach motion starts from one
location (la

r1), and ends at another location (la
r2). The distance between the location

of start object (lO1 ) and the start of the key reach motion location la
r1 is modeled

with a normal distribution, N(|la
r1lO1 |,μO1

r ,σO1
r ). Likewise, the distance between the

location of the end object (lO2 ) and la
r2 is modeled with N(|la

r2lO2 |,μO2 ,σO2
a ). The

start and end locations for each reach motion are obtained in the tracking. Then,
the start object, end object, and the key reach motion are detected at the same time,
according to the two distributions values. Here μO1

r , σO1
r , μO2

a , and σO2
a are learned

from the training data set. In the key reach motion, human hand carries object1
from location lO1 to location lO2 , so the belief of the key reach motion can be
further enhanced by checking if the detected start object (object1) is removed or
not. This can be carried out by comparing the likelihood value of object1 at location
lO1 before and after the key reach motion. Figure 5.6 shows the key reach motion
segment detected (marked as red) from the entire motion that put a pencil into a
pencil case.
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5.2.3.4 Manipulation Motion Estimation

A manipulation action can be modeled with the features in the human hand tra-
jectory. The features are the start time (ta

s ), the end time (ta
e ), the two reach lo-

cations (la
r1, l

a
r2), and the manipulation type (T a). According to Equation 1, we

model the conditional probability P(A|O1O2), and the initial likelihood of A,
P(A|eA). P(A|O1O2) can be computed with Equation refeq:moo1. If we define
la
s as the hand location for the start time ta

e , we can model P(ta
s , t

a
e |O1O2) with

N(|la
s lO|,μO

r ,σO
r ), and O is either O1 or O2. μO

r is the mean of the grasping dis-
tance for the object O, while σO

r is the variance, which can be learned from
the training data. P(la

r1|O1) and P(la
r2|O2) are modeled as normal distributions

N(|la
r1lO1 |,μO1

r ,σO1
r ) and N(|la

r2lO2 |,μO2
a ,σO2

a ), which have been discussed in Sec-
tion 5.2.3.3. P(T A|ob j1,ob j2) is computed according to the occurrence of manipu-
lation type and object type in the training data.

P(A|O1O2) = P(ta
s , t

a
e |O1O2)P(l

a
r1|O1) (5.2)

P(la
r2|O2)P(T

a|ob j1,ob j2)

We estimate the likelihood P(A|eA) with the features from the hand motion tra-
jectory. Based on the segmentation results in Section 5.2.3.2, the ballistic and mass
spring segments are replaced with labels. The manipulation motions are classified
according to the numbers of ballistic and mass spring segments, the translation rate
of the two segments, and time duration etc. Linear SVM is trained as the classifier
and gives the likelihood of the manipulation.

5.2.4 Object Reaction

The object reaction node is modeled with two parameters: reaction type (T R) and
reaction location (lR). It is difficult to fully model the object reaction. There-
fore, we only consider the state change of the object2 after the interaction. Sim-
ilar to [4], we use the color histogram at the object2 to represent the object
reaction. We estimate P(OR|eOR) by comparing the histogram of the object2 with
the histogram of the training instances from the training data set. Then we model
the prior P(OR|O1,O2,A) according to Equation (5.3). P(lR|O2) is model with
N(|lRlO2 |,μR,σR), and parameters μR and σR are learned from the training data.
P(T R|O1,O2,A) is learned from the training data set by counting the occurrence of
T R, O1, O2 and A.

P(OR|O1,O2,A) = P(lR|O2)P(T
R|O1,O2,A) (5.3)

5.2.5 Bayesian Network Inference

After getting the key reach motion and the interaction object pair locations, we
estimate the parameters for A and OR according to Sections 5.2.3.3 and 5.2.3.4. We
perform the inference with Pearls algorithm [25] once all of the initial likelihoods
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for O1, O2, A, and OR are estimated. The Bayesian Network, the object classifier
and the manipulation classifier are trained with fully-labeled data.

5.3 Experiments and Results

The following experiment and evaluation results demonstrate how this approach
is used and its performance. A dataset was collected from six subjects who per-
formed five types of interactions of five pairs of objects. The interaction object pairs
included teapot-cup, pencil-pencil case, bottle cap-bottle, CD-CD case and spoon-
cup. The actions for these object pairs were pouring water from a teapot to a cup,
putting a pencil into a pencil case, screwing on a bottle cap, putting a CD into the
CD case and stirring a spoon in a cup. All of these objects and actions were chosen
because they are very common in everyday life, and they are representative for dif-
ferent inter-object affordance relationships. The data from four subjects were used

(a)

(b)

Fig. 5.7 Results comparison: (a) Object1 likelihood confusion matrix. The left one shows
the result using HoG detector. The right shows the result using the described approach; (b)
Object2 likelihood confusion matrix. The left one shows the result using HoG detector. The
right shows the result using our framework.
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for training, and the data from the rest two subjects were used for testing. Each
subject performed every action for two or three trials.

The object classifier, the action classifier and the Bayesian Network were trained
in supervised manner. As stated before, the training images for the object classifier
were collected from the ImageNet [8] and Google Image Search. The training data
for the action classifier and the Bayesian Network were collected from manually
labeled video sequences taken in our experiments. Fifty videos sequences that per-
formed by four subjects were used for training. In each training video sequence,
object locations, reach locations and action type and the start frame of the manipu-
lation were manually labeled.

The test data set are video sequences that contain the action sequences performed
by the other two subjects. Figure 5.7(a) shows the object classification confusion
matrixes for object1 for the testing data, which is the object at the beginning of
the key reach motion. Figure 5.7(b) presents the likelihood confusion matrixes for
object2 that is the object at the end of the key reach motion. In each of the confusion
matrices, the ith row represents the likelihood value when the ith type of object
presents. For object1, as we can see from the confusion matrices, it was difficult to
distinguish a pencil from a spoon only based on the appearance, which is consistent
with the fact that they have the similar shape and both of them are small. With our
approach, by including the context of human-object-object interaction, our Bayesian
network was able to distinguish and recognize the spoon and the pencil more much
accurately. The average recognition success rate of our approach for object1 was
improved from 72.6% to 86.0% and improved from 75.3% to 82.8% for object2.

Among the five actions studied, if based only on motion features, it was difficult
to distinguish putting a CD into a CD case, putting a pencil into a pencil case, pour-
ing water into a cup, and stirring water in a cup because they had the similar motion
patterns. With the human-object-object interaction framework, they could be dis-
tinguished. Figure 5.8(a) shows the likelihood confusion matrix that was estimated

(a) (b)

Fig. 5.8 Action likelihood confusion matrix: (a) result using only motion features; (b) result
using framework. The ith row shows likelihood value when ith action is categorized.
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with only hand motion features. Figure 5.8(b) shows the action confusion matrix us-
ing human-object-object interaction framework. We can see that the overall average
recognition rate across all objects improved from 42.6% to 83.0%.

5.4 Conclusions

This chapter described a recent investigation on modeling the human-object-object
interaction with Bayesian network. The object categorization and action recogni-
tion are linked using human-object-object-interaction affordance framework. The
knowledge of object affordance is learned from labeled video sequences, and rep-
resented with a Bayesian Network. The elements of the Bayesian Network include
objects, human action and object reaction. The experiments with six subjects and
about 70 video sequences have shown that with human-object-object-interaction af-
fordance knowledge, the object classification rate, and especially the action recog-
nition rate were significantly improved.

The learned affordance knowledge represented in the Bayesian network can also
help us to learn affordance motion more precisely and apply the learned motion to
guide and control robot motions in a learning from demonstration framework such
as in [22], since the interaction affordance knowledge can suggest proper actions
that the robot should perform. The interaction motion can also be used to compute a
feasible and stable manipulation-task oriented grasp planning [23] with the help of
the object categorization. The motion analysis presented in this chapter is only one
of many approaches. A functional motion analysis could be applied (similar to [6])
to capture more dynamic features and represent the motion in a lower dimensional
space.
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