Generating Manipulation Trajectory Using Motion Harmonics

Yongqiang Huang and Yu Sun Robot Perception and Action Lab (RPAL) Computer Science and Engineering University of South Florida

Motion Learning and Generating

- Observe human manipulation motions
 - Different types of manipulation motion trajectories
- Represent motion
 - Essence of the motion: spatial-temporal patterns
 - Flexibility to adapt
- Generate motion trajectory for new constraints
 - Robot's kinematic and dynamic models
 - Environment constraints obstacles
 - New start and goal

Motion Representations

- Hidden Markov model (HMM)
- Directed graph, hierarchical graph, motion graph
- Principal component analysis (PCA)
- Linear dynamical system (LDS)
- Gaussian process (GP) + Newtonian dynamics
- Movement primitive
- <u>Functional data analysis primarily in motion</u> <u>analysis</u>
- Many others

Approach Overview

Functional Motion Data Analysis and Representation

Demonstrated Motion Trajectories

Motion Clustering

Motion Trajectory Generating

 $M_{robot}(t) = a_0 + a_1 f_1(t) + a_2 f_2(t) + a_3 f_3(t)$

Evaluation

- We evaluate two aspects of our approach
 - 1. How well does the new trajectory meet the two goals of the optimization?
 - resembling the demonstrated trajectories
 - pass the via points at specified time.
 - 2. Can the via points guide the new trajectory around obstacles?

Metrics

- The similarity of the new trajectory to the demonstrated trajectories is measured by the normalized distance computed by DTW.
 - First, we scale each demonstrated joint-space trajectory

$$q_n^* = \left(s_{final}(q_n - \bar{q}) + \bar{q}\right) + d_{final}$$

- Then, we compute the average normalized DTW distance as the similarity measure similarity(y) = $\frac{1}{N} \sum_{n=1}^{N} DTW(q_n^*, y)$
- The error of a new trajectory is defined by the distance between the via points and the corresponding points on the trajectory

$$error(y) = \frac{1}{N_c} \sum_{i=1}^{N_c} |y(t_i) - f(e_i)|$$

Where $f(\cdot)$ represents forward kinematics.

Error and Similarity

 α

Evaluation: Success at Clearing Obstacles with via Points

Evaluation with NAO

- We used the right upper arm of NAO as the kinematics chain
- We randomly generated sets of start and end points
- We compare with the Linear Segment Parabolic Blend (LSPB) algorithm, and the RRT algorithm from OMPL

Visual Comparisons

Generating Manipulation Trajectory Using Motion Harmonics

Yongqiang Huang, Yu Sun

University of South Florida

Summary

- Represent functional motions with motion harmonics
- Keep spatial-temporal motion patterns and meet constraints
- Use dissimilarity between motion and distance to the constraints to evaluate
- Work with sample-based motion planners
- This material is based upon work supported by the National Science Foundation under Grant No. 1421418.

References

- 1. Lin, Y. and Sun, Y., 2016. Task-oriented grasp planning based on disturbance distribution. In Robotics Research (pp. 577-592). Springer International Publishing.
- 2. Sun, Y., Yun Lin, and Yongqiang Huang (2016) Robotic Grasping for Instrument Manipulations, URAI, 1-3
- 3. Paulius, D. Huang, Y., Milton, R., Buchanan, W.D., Sam J., and Sun, Y. (2016) Functional Object-Oriented Network for Manipulation Learning, IROS, 3655-3662
- 4. Huang, Y. and Sun, Y. (2015) Generating Manipulation Trajectories Using Motion Harmonics, IROS, 4949-4954.
- 5. Lin, Y. and Sun, Y. (2015) Task-Based Grasp Quality Measures for Grasp Synthesis, IROS, 485-490.
- 6. Lin, Y. and Sun, Y., (2015) Grasp Planning to Maximize Task Coverage, Intl. Journal of Robotics Research, 34(9): 1195-1210.
- Lin, Y., and Sun, Y. (2015) Robot Grasp Planning Based on Demonstrated Grasp Strategies, Intl. Journal of Robotics Research, 34(1): 26-42.
- 8. Sun, Y., and Y. Lin. Modeling Paired Objects and Their Interaction." In New Development in Robot Vision, pp. 73-87. Springer Berlin Heidelberg, 2015.
- 9. Sun, Y., Ren, S., and Lin, Y. (2014) Object-Object Interaction Affordance Learning, Robotics and Autonomous Systems, 62(4), 487-496
- 10. Lin, Y., Sun, Y. (2014) Grasp Planning Based on Grasp Strategy Extraction from Demonstration, IROS, pp. 4458-4463.
- 11. Dai, W., Sun, Y., Qian, X., (2013) Functional Analysis of Grasping Motion, IROS, pp. 3507-3513.
- 12. Christine Bringes, Yun Lin, Yu Sun, Redwan Alqasemi (2013) Determining the Benefit of Human Input in Human-in-the-Loop Robotic Systems, IEEE ROMAN 2013, pp. 1-8.
- 13. Ren S., Sun Y. (2013) Human-Object-Object-Interaction Affordance, IEEE Workshop in Robot Vision (WoRV)/Winter Vision Meeting (WVM), pp. 1-6, 2013
- 14. Lin Y., Sun Y. (2013) Grasp Mapping Using Locality Preserving Projections and KNN Regression, IEEE Intl. Conference on Robotics and Automation, pp 1068-1073
- 15. Lin Y., Ren S., Clevenger M., and Sun Y. (2012) Learning Grasping Force from Demonstration, IEEE Intl. Conference on Robotics and Automation, pp. 1526-1531.
- 16. Lin Y, Sun Y (2011) 5-D Force Control System for Fingernail Imaging Calibration, IEEE Intl. Conference on Robotics and Automation, pp. 1374-1379
- 17. Sun Y (2011) Fingertip Force and Contact Position and Orientation Sensor, IEEE Intl. Conference on Robotics and Automation, pp. 1114-1119