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Motion Learning and Generating

* Observe human manipulation motions
— Different types of manipulation motion trajectories
* Represent motion
— Essence of the motion: spatial-temporal patterns
— Flexibility to adapt
* Generate motion trajectory for new constraints
— Robot’s kinematic and dynamic models

— Environment constraints — obstacles
— New start and goal



Motion Representations

Hidden Markov model (HMM)

Directed graph, hierarchical graph, motion graph
Principal component analysis (PCA)

Linear dynamical system (LDS)

Gaussian process (GP) + Newtonian dynamics
Movement primitive

Functional data analysis — primarily in motion
analysis

Many others




Approach Overview
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Functional Motion Data Analysis and
Representation
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Demonstrated Motion Trajectories

pool of joint angle for all degrees of freedom and all tasks
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Motion Trajectory Generating
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Evaluation

* We evaluate two aspects of our approach

1. How well does the new trajectory meet the
two goals of the optimization?
* resembling the demonstrated trajectories
* pass the via pointsat specified time.

2. Can the via points guide the new trajectory
around obstacles?



Metrics

* The similarity of the new trajectory to the demonstrated trajectories is
measured by the normalized distance computed by DTW.

* First, we scale each demonstrated joint-space trajectory
(n = (Sfinal(Qn -q)+ ‘7) + dfinal

* Then, we compute the average normalized DTW distance as the similarity measure
N

1
similarity(y) = v IDTW(CI;;:}’)
n=

* The error of a new trajectory is defined by the distance between the via
points and the corresponding points on the trajectory

1 e
error(y) = N_czi=1|y(ti) — f(e)|
Where f(:) represents forward kinematics.
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Error and Similarity
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Evaluation: Success at Clearing
Obstacles with via Points

generated trajectory in c-space (only showing 3 degrees) generated trajectory in c-space (only showing 3 degrees)
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Evaluation with NAO

 We used the right upper
arm of NAO as the
kinematics chain

* We randomly generated
sets of start and end
points

* We compare with the
Linear Segment Parabolic
Blend (LSPB) algorithm,
and the RRT algorithm
from OMPL
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Visual Comparisons
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Summary

Represent functional motions with motion
narmonics

Keep spatial-temporal motion patterns and meet
constraints

Use dissimilarity between motion and distance to
the constraints to evaluate

Work with sample-based motion planners

This material is based upon work supported by
the National Science Foundation under Grant No.
1421418.
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