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Abstract— To facilitate manipulation tasks, grasp should be
selected intelligently to fulfill different stability properties and
manipulative requirements in the tasks. In this paper, two task-
dependent grasp quality measures are introduced: task wrench
coverage measure and the manipulator efficiency measure. The
first one measures the ability of a grasp to provide required
interactive wrench during a task, while the second measures the
effort that the manipulator takes for the whole manipulation
process in facilitating the required instrument motion, which
is determined by the grasp when the motion of the instrument
is defined. The proposed measures are then used in selecting
grasps for three typical manipulation tasks in simulations and
using a real robotic system and produced successful grasp
synthesis outcomes that satisfy manipulative requirements.

I. INTRODUCTION

Currently, most grasping approaches consider only pick-
and-place tasks without any physical interaction with other
instruments or the environment, which are common in an
industry setting with limited uncertainty. When robots move
into our daily-living environment and perform a broad range
of tasks in an unstructured environment, all sorts of physical
interactions will occur, which will result in random physical
interactive wrench: force and torque on the instrument in
a robot’s hand. In addition, for an instrument to perform
a required task, certain motions need to occur; we call it
“functional instrument motion,” which represents the innate
function of the instrument and the nature of the task. There-
fore, grasps should be selected intelligently to fulfill different
stability properties and manipulative requirements.

Grasping with a robotic hand gives flexibility in “mount-
ing” the instrument onto the robotic arm – a different grasp
will connect the instrument to the robotic arm with a different
pose, then the inverse kinematics approach will result in a
different joint motion to achieve the same functional instru-
ment motion. Thus, the grasp and the functional instrument
motion decide the manipulator’s motion, as well as the effort
to achieve the motion.

Therefore, we propose to establish two objectives to serve
the purpose of a grasp: the grasp should maintain a firm grip
and withstand and provide necessary interactive wrench on
the instrument during the task; and the grasp should enable
the manipulator to carry out the task most efficiently with
little motion effort, and then search a grasp to optimize both
objectives.

To measure how firm a grasp is, one widely used qual-
ity criterion is force-closure property: the capability of a
grasp to apply appropriate forces on the instrument to resist
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disturbances in any directions, defined as the radius of the
largest wrench space ball that just fits within the unit grasp
wrench space [1]. Related researches were developed in [2],
[3], [4], [5], etc. Other quality measures include internal
forces and stability, etc. Detailed reviews of grasp measures
can be referred to [6], [7]. These quality measures are all
task independent, where an evenly distributed disturbance
in all directions is assumed. Alternatively, the force-closure
property can be modified as task-dependent metrics, where
the shape of the task wrench space is adaptable to a task
instead of a uniformly distributed ball.

Works in [3], [8], [9], [10], [11] incorporated this force
requirement into the grasp measure. However, the difficulty
of modeling a task has been a main challenge in task-
oriented grasp planning [12]. Most of the related works
empirically approximate the task wrench space rather than
really measuring it in the physical world.

Few works have taken the manipulation motion into
consideration while planning a robotic grasp. One related
measure of grasp quality is the manipulability, i.e. the ability
of the manipulator to impart arbitrary motions at the end-
effector [13], [14]. The measure of manipulability can help
avoid the singularity situation where there is a fairly low
transition rate from joint velocity to the end-effector velocity
for all motion directions. But it does not consider the task-
dependent requirements that could be only several dominant
motion directions. The problem was addressed by Chiu
[15], who defined a task compatibility index to measure
the transformation ratio along some directions at a single
moment. The property of manipulability was extended to
multi-finger grasping in [16], [17]. However, the measures
of manipulability and task compatibility index are used to
compute the optimal posture at one single moment, but not
to optimize over the entire sequence of continuous motion
throughout an entire manipulation task. In addition, the
previous works did not consider a manipulator and a multi-
finger hand together in fulfilling instrument manipulation
requirements.

In this paper, we consider manipulator motion in grasping
evaluation given a manipulation task. We combine the ma-
nipulator efficiency measure with the task wrench coverage
measure we proposed recently [18], [19] to evaluate a
grasp given a human demonstrated task. The task wrench
coverage criterion measures the ability of a grasp to resist the
task disturbance, while the manipulator efficiency criterion
measures the effort of the manipulator makes in order to
accomplish the required manipulation motion.
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II. TASK-BASED GRASP QUALITY MEASURES

A. Data Collection

We aim to synthesize a grasp that best fulfills the task
requirements. Although tasks can be semantically described,
such as pouring water using a bottle, pick up the bottle
and open the bottle cap, etc., they are know to be difficult
in mathematically modeling. In the physical world, task
requirements are separated into two parts by Li and Sastry
[8]: force requirement and motion requirement. While most
of the researchers placed their emphasis on grasp metric
definition and computation, they assume that the task is
known or approximated by experience [20].

We model the task with the data collected in observation
of the instrument being manipulated. The interactive wrench
between the environment and the instrument, as well as the
instrument’s motion are captured during human demonstra-
tion in a virtual reality environment. We provided a user
interface consisting of a haptic device Phantom Omni, and a
virtual reality environment. For each task, a user is asked to
manipulate an instrument using the haptic device (see Figure
1 for example). Detailed experimental setting and evaluation
of the simulation is explained in [19]. The haptic device
Phanton Omni is not used to teach the robotic grasping, but
used to collect manipulation features of instrument forces
and motions.

 
w

Fig. 1: A user interface for human users to perform ma-
nipulation tasks in a virtual environment. Left figure: a
haptic device, PHANTOM Omni, to manipulate a virtual
instrument. Right figure: a virtual pen is being manipulated
in the virtual environment. The motion sequence of the
instrument and the disturbance wrench is being captured.

The forces and torques exerted to the instrument in the
environment can be grouped as a wrench vector w = [w, τ ]T ,
where f is a 3-d force vector and τ is a 3-d torque
vector. Gravity and the wrench generated by acceleration
are non-contact wrench that are not acting on the surface
of the instrument, but acting on the center of mass of the
instrument. The collision force of the instrument is captured
in the environment in every iteration.

Similarly, the task sequential motion of the instrument is
described by a sequence of vector u ∈ Rm representing the
position and orientation of the instrument in task coordinate.

TMS = {u(t), ˙u(t), ¨u(t)|t = t0, t1, ..., tn} (1)

Given the force and motion requirements modeled from
human demonstration, we formulate two criteria, the task
wrench coverage measure and the manipulator efficiency
measure to evaluate a grasp in terms of satisfying the force
and motion requirements.

B. Task Wrench Coverage Measure

The measure of the ability of a grasp to resist the distur-
bance wrench can be analyzed based on the contact points
formed by a grasp. Given n contact points of a grasp, the
grasp can be modeled as a Grasp Wrench Space (GWS) –
the space of all wrenches that be applied to the instrument
from the contacts. If the magnitude of the contact force is
constrained to unitary, it is called unit GWS (UGWS). Sim-
ilar to the grasp wrench space, a task can also be described
as a task wrench space (TWS) – the space of all disturbance
wrenches the instrument has to resist or provide during a
manipulation task. If no task-oriented information is provided
to form a subset of the whole space of wrenches, a typical
task wrench space assumed to be a 6D ball Tball centered
at the wrench space origin, where external disturbance is
uniformly weighted (Left of Figure 2).
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Fig. 2: Grasp quality measures for (a) task ball (b) task
ellipsoid.

For different tasks, even for the same instrument, the
wrench on the instrument could be significantly different.
For example, a user was asked to perform a cutting task and
a butter-spreading task with the same knife. The interactive
wrench distributions in the two tasks are reported in Figure
3(a)-(d). As shown for the cutting task in Figure 3(a),
significant cutting force is applied on the cutting edge (along
z axis) and along with friction force mainly along the knife’s
long direction (x axis). The torque generated along with the
force is shown in Figure 3(b). For the butter-spreading task
shown in Figure 3(c) and (d), the knife applies pressure
along knife blade sides (y axis), along with friction along
the z axis. As we have observed, neither of the two task
wrench distributions could be represented well with a 6D
ellipsoid. Therefore, instead of covering the regular artificial
6D wrench space, a GWS should cover the measured task
wench space to guarantee a firm grasp in the task.

However, in reality, due to uncertainty in physical inter-
active manipulation tasks, the interactive wench distribution
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Fig. 3: (a)-(b): cutting task distribution of task wrenches
projected to Fx-Fy-Fz and Tx-Ty-Tz subspaces, respectively,
where the task wrenches are distributed mainly in -Fz and
Fx; (c)-(d): corresponding task wrench distribution for butter-
spreading task, where the task wrenches are distributed
primarily in +Fy, -Fy, +Fz, +Tz, -Tz;

varies in different trials. Some wrench samples, especially
large spikes, rarely occur, but stretch the TWS and make
it difficult to cover. Because a robotic hand has limited
capability in grasping force, it is reasonable to allocate the
robotic hand’s capability to prioritize the coverage of the
most frequent wrench, especially for daily living tasks, in
which dropping instruments occasionally is not catastrophic.

Instead of focusing on the shape of the TWS, we take
the density of the task wrench samples into account. Since
the task wrench distributions are irregular and different, we
cannot assume the task wrench samples are drawn from a
given probability distribution. Therefore, we estimate task
wrench density distribution with a nonparametric model by
assigning equal probability to each wrench observation (O).

Based on the nonparametric task wrench density distribu-
tion, we propose to define the task wrench coverage measure
as:

Qw =
Count{O|O ∈ GWS ∩ TWS}

Count{O|O ∈ TWS}
(2)

where Count{O|O ∈ GWS∩TWS} is the count of task
wrench observations in the TWS that are covered by GWS,

while the Count{O|O ∈ TWS} provides the count of the
total task wrench observations in the TWS. Qw measures the
percentage of task wrench observations covered by GWS.
The greater Qw is, the higher chance the grasp will have in
preventing dropping the held instrument during the task.

C. Task Manipulator Efficiency Measure

In addition to providing a firm grasp, humans also decide
where and how to grasp an instrument according to the
task to be performed. For example, when humans grasp a
hammer, we mostly will grasp the head to carry and the
end of the handle to swing, because humans desire to reach
a large swing motion with a relatively small arm motion
as well as to generate a large impact force. The grasp
optimization should not consider only the ability to apply
force but also the arm and wrist motions.

To perform a task, the instrument motion trajectory can
either be computed by a motion planner or generated from a
learned motion model. If the instrument is rigidly mounted
on the robot’s wrist, to achieve the desired instrument motion
trajectory, the instrument position and orientation vector can
be mapped to joint angle vector q with inverse kinematics.

A grasp can be described by g = [p,x]T , where p ∈ Rd

is the vector of hand joints in joint coordinate, and x ∈ Rm

is the vector of wrist position and orientation in Cartesian
coordinate. The hand joints and the relative wrist position to
the instrument are fixed given a grasp, so the wrist position
and orientation x(t) is changing together with the instrument
motion.

Given a grasp g and the target instrument trajectory u(t),
the wrist motion X = {x(t)|t ∈ [0, tn]} can be computed via
kinematic transformation in Cartesian coordinate, as shown
in Figure 4. From the wrist motion, using inverse kinematics,
the corresponding joint motions Q = {q(t)|t ∈ [0, tn]}.
Various approaches have been developed to solve inverse
kinematics problems. In our experiments, we utilized the
analytic approach in Matlab Robotic Toolbox [21].

u(�) 

x(�) 

u(��) 

Object trajectory 

Wrist trajectory  

Arm configurations q

 

Fig. 4: An example of grasp and manipulation.
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When the instrument trajectory is defined by the required
task motion, different grasps g’s will require different joint
motions Q’s. The arm motion is controlled by outputting
joint torque from joint actuators, written as the dynamic
equation:

τ = M(q)q̈+ C(q, q̇)q̇+ F (q̇) +G(q) + J(q)f (3)

where τ is the m-joint vector of torques from the actuator,
q, q̇, q̈ are respectively the vector of joint, velocities and
accelerations of the arm. The first term is the inertial forces
due to acceleration of the joints, and M is the symmetric
positive definite mass-inertia matrix. C(q, q̇) is the Coriolis
and centripetal coupling matrix, F (q̇) is the friction force;
G(q) is the gravity term. J(q) is the Jacobian matrix, f is
the external load applied to the end-effector. The last term
J(q)f is the joint torque transmitted from the end-effector.

There are various performance measures to the manip-
ulative motion used as the cost function in the literature,
such as energy consumption, motion jerks, effort, or their
combinations[22]. Here, we define the manipulator efficiency
by the manipulator’s motion effort:

Qe =

∫
tn

t0

τ(t)T τ(t)dt (4)

The vector of torques τ are applied to each joint by
the actuators, and it can be derived from the joint space
dynamics. The manipulator efficiency represents a measure
of the effort given by the sum of every squared joint torque
integrated over time for the entire manipulation process.
According to the dynamics equation, optimizing it represents
a search to find the optimal grasp that results in the smallest
arm motion that yields smooth trajectories and avoids large
motion changes. When applied to a real robot, it minimizes
the stresses to its actuators and its energy consumption.

D. Grasp Planning to Fulfill the Task Requirement

Hence, we describe the problem by finding the optimal
grasp measured by the wrench coverage measure Qw and the
manipulator efficiency measure Qe, subject to the kinematics
constraints and the dynamics constraints.

The force and motion criteria evaluate the grasp from two
distinct aspects independently or combined in several ways.
For example, the grasp can be selected by either sequential
evaluations under these two criteria, or a global criterion
combining them together. The way of selecting the optimal
grasp should take into concerns both applications and the
hand capability.

In this paper, we compute the set of preliminary candi-
date grasps using wrench coverage measure, first without
computing arm configurations. The candidate grasp set is,
therefore, independent of the arm kinematic model, as well
as the position and orientation of the target instrument
relative to the manipulator, so it can be generated off-line.
Then, each grasp in the candidate grasp set is measured by
the manipulator efficiency criterion. The grasps that cannot
meet the reachability and acceleration constraint are rejected.

The optimal grasp is then selected under the measure of
the manipulator efficiency. This computation of a grasp is
in coincidence with the intuitive consideration in physical
world, because the grasp should be stable, in the first place,
to ensure the instrument not to be dropped under the outside
disturbance; then the manipulator efficiency is considered, in
the second place, to yield a small and smooth arm motion.
Further dimensionality reduction can be performed to reduce
the search space for the grasp planning [23], [24], [25].

III. COMPARING MEASURES IN EXPERIMENTS

We describe the grasp planning problem by finding the
optimal grasp in terms of both wrench and motion require-
ments, measured by the wrench coverage Qw and the arm
motion effort Qe, subject to the physical constraints such
as velocity and accelerations. We compared the two grasp
measures Qw and Qe for different grasps and instruments,
as summarized in Figure 5. The execution process can be
seen in the video attachment. The comparison was tested
with a Barrett hand and a FANUC LR Mate 200iC robotic
arm that is a 6-axis robotic arm with a spherical wrist. The
instrument motions in the experiments are predefined. How-
ever, manipulation motions could be generated automatically
using motion planners or motion harmonics [26].

Three grasps were selected for each instrument, sorted
by the wrench coverage measure in a descending order, as
shown in Figure 5(a). It can be observed in bottom figure
that the order of motion effort with the corresponding grasps
differs from instrument to instrument. For the light bulb task,
grasp 1 is the best of the three if measured by task wrench
coverage, but if measured by the manipulator efficiency,
grasp 3 is the best of the three; for the hammer task, grasp
1 is the best evaluated by both measures; and for the cup
task, grasp 2 is the best if measured by the manipulator
efficiency. Since there is no correlation between the two
grasp measures as shown in the examples, the two measures
should be considered comprehensively.

Two selected grasps of each instrument are visualized in
Figure 6 as detailed illustrations. Each grasp is marked by
three grasp measures: force-closure property ǫ and the two
proposed quality measures. In the left column, the “screw
in a light bulb” task, grasp measure Qw = 0.92 for the
grasp shown in the upper figure, meaning it has a larger task
coverage than that in the lower figure. The task independent
force-closure property is not coincident with the proposed
task wrench coverage measure. Although ǫ value of the lower
grasp is higher than the higher grasp, it has a lower ability to
resist disturbance occurred in the specific screwing task. The
manipulator efficiency measure Qe = 1.54 of the upper grasp
is also much less than the lower grasp, because it requires
only wrist motion to screw the light bulb. Therefore, the
upper grasp is “better” than the lower grasp, in terms of
both task wrench coverage and motion effort.

In the middle column, the upper grasp has a higher ability
than the lower to resist the disturbance occurred on the head
of the mallet, but it requires the larger motion effort to
achieve the striking motion. Different grasps can be selected
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(a)

(b)

Fig. 5: Measures of wrench coverage and motion effort of
different grasps: (a) wrench coverage measure; (b) motion
effort measure.

in different situations. For example, the lower grasp may be
chosen for a weak hand to better resist both heavy gravity as
well as striking force. Whereas for the lower grasp, a larger
torque is applied to the hand from the head of the mallet, but
the manipulation can be achieved with less motion effort.

In the right column, all three measures of the grasp in
the upper figure is “better” than the lower grasp. Figure 7
shows the manipulation process of a cup as an example to
compare the two different grasps. To achieve the same cup
manipulation, the grasp shown in the top row figures only
requires wrist rotation while the grasp shown in the bottom
row figures requires larger arm motion than the grasp in the
top row.

According to the results, there is no correlation between
the two grasp measures. The two quality measures can be
combined in different ways according to the applications and
task requirements. For example, they can be combined as
one global measure using weighted sun, so the performance
depends on different weights. If the execution efficiency is of
more concern, then a larger weight can be put to the motion
measure.

IV. CONCLUSION

In this paper, two task-oriented grasp quality measures
are introduced for grasp synthesis given a manipulation

Fig. 6: Example of grasps compared by different quality
measures for the three tasks.

task. A quality grasp should not only maintain a firm grip
and withstand required interactive wrench in the task, but
also enable the manipulator to carry out the task most
efficiently with little motion effort from the manipulator.
Both task-oriented grasp quality measures are formulated and
compared.

The current work assumes the manipulation is performed
with one grasp. In many situations, the manipulation cannot
be fulfilled by only one grasp, but requires transition from
one grasp to another grasp. Moreover, with multi-finger
robotic hands, in-hand dexterous manipulation becomes pos-
sible. New research will be able to plan dexterous manip-
ulation that connects several optimal task-wrench-coverage
grasps at different stages of the task without sacrifice the
manipulator efficiency.

When computing the task motion effort in our current ex-
periments, we only tested it with one non-redundant robotic
arm that has 6 DOFs, where there are only a finite number
of solutions to the path tracking problem. For redundant
robotic arms that have more than 6 DOFs, since there may
be an infinite number of solutions, a more general approach
is necessary to find the optimal solution given a grasp.
Therefore, a another future direction is to combine motion
planning together with grasp planning.
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