2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

Generating Manipulation Trajectory Using Motion Harmonics
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Abstract— This paper presents a novel manipulation tra-
jectory generating algorithm that constructs trajectories from
learned motion harmonics and user defined constraints. The
algorithm uses functional eigenanalysis to learn motion har-
monics from demonstrated motions and then use the motion
harmonics to compute the optimal trajectory that resembles
the demonstrated motions and also satisfies the constraints.
The algorithm has been tested on five real human motion data
sets to obtain motion harmonics and then generate motions of
each task for a NAO robot. The generated trajectories were
compared with the trajectories generated using linear segment
with parabolic blend approach and with the Open Motion
Planning Library. The approach can also work with motion
planners.

I. INTRODUCTION

Learning from demonstration (LfD) [1] is a widely used
technique that is often used to teach robot motions. The
goal of teaching a robot is not to replicate a task, but
rather, to convey the essence of the task, so that the task
can be undertaken in a new environment with possibly
different constraints. Since the new/different constraint has
not been taught, by completing the task while satisfying
that constraint, the robot essentially generates a new motion.
In the graphics community, this problem is often referred
to as motion synthesis, where the robots are replaced with
animated characters.

Extensive research has been conducted related to motion
generation/synthesis, and a number of solutions have been
proposed. As a valid model for time representation, the
hidden Markov model (HMM) has been successful in human
motion modeling. For example, it is used as the second
level of the two-level model of motion data in [2]. In [3],
a multidimensional HMM is used to encrypt the styles of
motions, and to generate new styles. Similar to [3], also
focusing on variation/styles of motion, [4] learns the structure
of a dynamic Bayesian network, which has the ability to
synthesize both temporal and spatial variants of the original
motion.

The linear dynamical systems (LDS) provides another
solution. [5] uses LDS for modeling motion textons and
transition matrices for texton distribution, and synthesizes
motion sequences with constrained LDS, while [6] presents
motions with LDS, and generates new motions using a opti-
mization technique which considers both Gaussian-modeled
motion priors and user defined constraints. Different from
LDS, [7] uses Gaussian process (GP) to model the force field
that exists in the motion, and combines it with a Newtonian
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dynamics model to synthesize new motions. In [8], GP is
used to model transitions between morphable primitives,
which is a model that encrypts geometric and time variation.
In [9], the motion is modeled as a directed graph where
the edges represent clips of motion and the nodes represent
their connections. The branch and bound algorithm is used
to search for a path that meets the user’s requirements. [10]
builds a hierarchical graph to represent motion sequences,
and uses random search to look for paths that accommodates
to user constraints. On the basis of [9], [10], and [11], [12]
builds a compressed interpolated motion graph, and uses
ARA*, an anytime heuristic search algorithm to find the
optimal or sub-optimal path in the graph that meets the
path sketched by the user and also compute the interpolation
weights.

Besides the above mentioned models, the movement prim-
itive is another approach for motion modeling [13]. In the
movement primitive framework, a discrete motion is repre-
sented by an attractor dynamical system and a cyclic motion
is represented by a limit-cycle dynamical system. The frame-
work uses two sets of dynamical systems: one for dynamical
behavior, the other for following a desired path. Principal
component analysis (PCA) is used in [14] to process the
motion. New motions are obtained through optimization
with constraints on energy and trajectory smoothness. [15]
considers each motion time series as a high-dimensional vec-
tor, and generates trajectories by interpolating the principle
components obtained through PCA. In [8] and [16], PCA
is used for analyzing the geometric variation and timing
variation separately, and the results are combined to form
a single deformable model. The new motions are obtained
through the maximum a posteriori framework.

Another way of dealing with time series is functional
data analysis, which treats data as discrete observations from
continuous functions [17]. Different from vectors, which
represent time by the order of points, and from HMM, which
represent time using states, functions embed time in a con-
tinuous manner and imitates actual motions more naturally,
and therefore has become a powerful tool in motion analysis.
[18] applies functional PCA for arm gesture recognition
and whose efficiency exceeds that of dynamic time warping
(DTW). [19] combines PCA and functional PCA to analyze
human grasp types and arrives at a new taxonomy of grasp
types. Besides computer vision and robotics, functional PCA
has found use in other fields such as brain science [20].
The application of functional analysis on motion generation,
however, has been rare.

This paper contributes a unique framework of motion
generation. Our approach applies functional analysis to ex-
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tract motion harmonics from demonstrated motion, takes
constraints from the user, and generates new motions that
balance meeting user constraints with resembling learning
data through optimization. The approach can potentially
work with motion planners to clear obstacles in the joint
space.

The paper first gives a concise overview of the approach
in section II-A. Then, it covers data preprocessing in section
II-B, explains how the motion harmonics are extracted in
section II-C, and how they are used to construct new motions
together with constraints in section II-D and II-E. Section II-
F and II-G define the dissimilarity and the error measure used
for evaluation. In the end, the proposed approach is evaluated
in experiments from three different aspects and the results
are presented and discussed in section III.

II. APPROACH

A. Approach overview

Demonstrate
world-space
trajectories

Generate new
trajectories

Extract motion
harmonics

Trajectory
preprocessing

* Functional
representation
* Eigenanalysis

¢ Time alignment

* Spatial adaptation

* Trajectories
converted to joint
space

* Using motion
harmonics

* Using constraints

* Optimization

Fig. 1. The proposed approach takes the demonstrated trajectories and goes
through three major steps. First, the data go through temporal and spatial
preprocessing and switch to a different space, and motion harmonics are
extracted from the data. Then the approach takes task constraints, and uses
the motion harmonics to generate new motion through optimization.

Fig. 1 shows the procedures of the proposed motion
generation approach. First, human motion trajectories in the
world space are collected. Since the trajectories may not lie
completely within the workspace of the robot, we adapt them
and meanwhile perform inverse kinematics to convert them
to the robot’s configuration space or joint space. Instead of
discrete vectors, we use continues functions to represent the
trajectories. Based on the data’s functional representation, a
series of continues motion harmonics are obtained through
functional analysis. To generate a new trajectory for a task
with novel constraints that could be related to a new environ-
ment or a new goal, an optimal composition of the motion
harmonics is computed to find a trajectory with the goal of
resembling the demonstrated trajectories and minimizing the
distance between the trajectory and the given constraints. The
generated trajectory is in the robot’s joint space and can be
directly used as joint control inputs. The algorithm in this
paper is presented to work in the joint space because of our
intention of facilitating joint control. It would work in the
world space equally well.

B. Motion Data Preprocessing

We preprocess the data before extracting the motion
harmonics. First, we align all trajectories in time using
batch DTW [21]. If the robot’s workspace is smaller than
demonstrated workspace, the trajectories are then adapted

to fit in the robot’s workspace by iterative downscaling
and translation. The adaptation returns the final scale and
translation of the entire set of trajectories, and the inverse
kinematics of each single trajectory.

C. Extracting motion harmonics

1) Representing trajectories with functions: In the real
world, physical quantities change continuously in time. In
contrast, most data people collect are discrete in time due
to the limited sampling rate of measuring devices. Coming
from physical quantities, data are intrinsically continuous
and therefore should be treated accordingly. Let x =
[x1, 22, ...,27]T € RT*! denote some human motion data
collected uniformly in time where 7 is the total number of
samples. Using x directly as a T-vector in analysis fails to
preserve the very essential characteristics of human motion
which is continuous. To remedy that, we consider x as being
driven by a function z(t), and x as discrete samples of x(t)
collected along axis ¢ with measurement noise.

A general function that does not have an explicit expres-
sion can be expressed using a basis expansion. Denote by
{6r(t)}, kK = 1,..., K, a general functional basis system,
and {c}, the corresponding coefficients. A general function
f(t) can be expressed as

K
F&) =" cron(t). )
k=1

To represent x using a basis expansion as in Eq. (1), both
{¢r(t)} and {ci} must be determined.

{¢x(t)} should be determined according to the character-
istics of data x. For open-ended non-periodic data, the spline
basis offers modeling flexibility through the choice of order
and design of breakpoints. For data that exhibits periodic
patterns, the Fourier basis is a natural candidate.

With a chosen basis system {¢x(t)}, cx’s are computed by
fitting the basis {¢x(t)} to the data x. Since ¢ (¢) is defined
within time interval [1,7], the basis ¢y (t) can be sampled
as @y, = [Or1, Pr2, - Grr)” € RT*D within [1,T]. We
define ® = [¢;, P, ..., Px] and ¢ = [c1, Ca, ..., cx|T , then
the data x € R7*! can be proximated by

x = ®¢, 2

where
¢ = argmin(x — ®c)TW(x — ®c), 3
and W € RT*T is a symmetric weighting matrix that
accounts for non-uniform variance along time range [1, 7.
¢ specifies the approximated driving function Z(t) =
> ok Cedk(t). Particularly, we may want Z(t) to be smooth.
We can define a smoothness penalty

T T[ K 2
Panoots = / & (#)]2dt = / S asl)| d @
1 1 k—1

Let D?® be {¢}(t)} sampled along [1,T)]. Thus,
Pimooth = H(D2‘1>)C‘|2 o)

4950



first eigenfunction carries 61.35% variation

. 02
= 0
S 33 ‘ ‘ = ‘ ‘
10 20 30 40 50 60 70
te[1,T]
second eigenfunction carries 27.71% variation
) eSS =
S e e
© 28;21: ‘ ‘ N = = ]
10 20 30 40 50 60 70
te[1,T]

third eigenfunction carries 6.23% variation

T T T T

L

Fig. 2. Tllustration of different eigenfunctions carrying different variation.
In each subfigure, the mean function is shown as black solid line, the mean
function plus the eigenfunction is shown as blue dash-dotted line, and the
mean function minus the eigenfunction is shown as red dashed line.

¢ is found by
¢ = argmin [(x — ®c)'W(x — ®c) + APinooth] s (6)

where \ weighs Pynoon against (x — ®c)? W (x — ®c).

2) Functional analysis: After adaptation, the demon-
strated motion trajectories are converted into the joint space.
Consider a set of joint space trajectories represented by
functions: ¢;(t), where ¢ = 1,...,N, and t € [1,T]. N
is the number of trajectories.

The motion harmonics are the eigenfunctions of {g¢;(t)}.
We explain the acquisition of motion harmonics using the
simplest case where ¢;(t) is one dimensional. To get the
motion harmonics, we first calculate the mean motion

N
1
w(t) = + ; a: (1), )
and use it to center all the trajectories:

q; (t) = qi(t) — qo(t). ®)

The covariance function is defined as
(t:5) = 5 Do ai (04 5) ©
v(t,s) = — . (s
b N ql q’L b

and the eigenfunctions ¢(t) are determined by solving

T
[ vt 9g(ds = xg(0). (10)
1
where A is the eigenvalue corresponding to g(t). Different
eigenfunctions carry different variation in the data, and a
simple example is shown in Fig. 2.
We select the M eigenfunctions g,,(t), m = 1,..,.M,
with the largest eigenvalues, and refer to them as motion
harmonics.

D. Constructing trajectories using motion harmonics

Using M eigenfunctions g,,(t), m = 1,...,M, a new
trajectory can be constructed by

M
Q(t) = q0<t) + Z Cmgm(t)7

m=1

Y

where ¢, is the coefficient of g,,(t). Since {g,n(¢)} comes
from the data, by using them one can only generate trajec-
tories that lie within the range of variation in the data. To
allow shifting of new trajectories, we extend {g,,(¢)} and
add a constant basis gpr11(t) = 1:

{gm O }m=1 = {gm(D}nis U{garn (D)},

where M’ = M + 1. Thus, a new trajectory is constructed
by

(12)

M/
q(t) = qo(t) + Y cmgm(t). (13)
m=1

The construction of a new trajectory is determined by the
coefficient {c,,,}, m =1,.., M".

E. Incorporate Constraints

1) Timed configuration constraints: For the learned task
to be performed in a novel environment or for new goals,
a set of N, constraints can be specified and are denoted as
{e;}, i = 1,2,..., N.. The constraints specify the joint-
space configuration at time instants {t;} € [1,7T], i =
1,2,..., N,

The joint space trajectories {g;(t)}, ¢ = 1,.., N, can be
approximated using the motion harmonics {g,,(t)}*_; (i.e.,
without the constant basis gys+1(t) = 1), with certain coef-
ficients {c¢,, ;}. The coefficients are obtained by computing

T
mi = [ (@) - a0(®)gm ()t (14)
1
whose mean is
1 N
G = N;cm,i m=1,.M. (15)

We want to construct a new trajectory in a way that
takes the constraints into consideration and also respects the
demonstrated trajectories. The new trajectories is constructed
by solving

1 N, M’
. 2
Hclin ﬁc -71[612 - QO(E) - Z:l Cmgm,(ti)]
a M
= \2
+ Mrnzd(cm _Cm) 9 (16)

where « is the weighting factor that balances between
making the new trajectory stay close to the demonstration
and making it meet the constraints.
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2) Joint angle limits: Since ¢(t) must lie within the joint
space so that the robot can physically perform it, we add the
constraints of joint angle range

where ¢; and g, are the lower and upper bound, respectively,
for the joint.

The problem posed by Eq. (16) and (17) can be solved by
quadratic programming.

a < qo(t ) < qu, tel[l,T] (17)

F. Dissimilarity measure

A dissimilarity measure is defined for the evaluation of
our motion generation approach. It measures how dissimilar
a trajectory is to a set of other trajectories.

A newly generated world-space trajectory y is compared
with every non-preprocessed demonstrated world-space tra-
jectory z;, ¢ = 1,.., N, where y and x; are both discretely
sampled time series. We use DTW to quantify the distance
between y and x; because DTW is a main benchmark of
similarity measures for time series and very few similarity
measures have been reported to systematically outperform
DTW [22], [23]. However, since DTW is distance based, the
accumulated distance matrix generated using two trajectories
that are far away and with different scales may lead to
incorrect alignment or incorrect normalized distance between
the trajectories. To avoid that potential problem, we scale and
translate each x; before comparing it with y, using the final
scale sgny and final translation dgy, returned by adaptation.
Let trajectory x; be specifically expressed as a time series
x; = {Ti1, %2, ..., Ti;r }, where T' is the number of samples.
The center of z; is T; = Zthl 2 , and x; that is scaled
and translated is

Jj;k = (Sﬁnal<x .fz) + jz) + dﬁnal- (18)

We define the distance between x; and y as the normalized
minimum distance between x and y computed by DTW, and
denote it as DTW (x},y). The dissimilarity between y and
{x;} is the average distance between y and {z} }. We assume
the dissimilarity is always measured between the data {z;}
and the new trajectory y that uses the data, and therefore we
omit {x;} when we talk about dissimilarity and only mention

Y:
N
dissimilarity(y Z (19)

(z7,9)-

G. Error measure

We measure how well trajectories generated by our ap-
proach meet the timed constraints by defining the average
world-space error:

N N

oD Iyt = flep)ls

i=1 j=1

error(y)

NN 20)

where y is the generated trajectory and e; is the j-th
constraint at time ;.

Fig. 3. We define the right arm of NAO as the kinematics chain.

IIT1. EXPERIMENT
A. Preparing data

1) Obtaining data: We tested our approach using five sets
of data taken from [24]: beat, hand over, answer phone,
pull gun, and punch. Among those tasks, answer phone and
pull gun are performed by the same person, and each of
the rest three is performed by a different person. Each task
is repeated a number of times, and there are a total of 63
repetitions/trials.

The robot on which we tested our approach is NAO H25
v3.3. We set the hand as the end effector and consider
the right arm as the kinematics chain (Fig. 3). Thus, the
root joint for human is R_collar [24] and for NAO it is
RShoulderPitch. We include three more joints for NAO:
RshoulderRoll, RElbowYaw, and REIbowRoll. Thus our robot
model has a degree of freedom (DoF) of four, which severely
limits the options of orientation when it reaches certain
positions. Hence, in this paper, we only use the position
information (z,y, z), and thus, each motion trial is a three-
dimensional trajectory. The distance in the world space is
measured in millimeter.

2) Preprocessing: Our implementation of DTW uses the
Sakoe-Chiba local constraint with a slope range of [0.5, 2]
and which implies the Itakura global constraint.

Being an iterative process, the adaptation is affected by the
initial scale and inter-iteration scaling factor. A large initial
scale and a small scaling factor makes the algorithm runs
slower, but gives it higher probability to converge.

B. Motion generation

Ramsay’s FDA Matlab package [17] is used to represent
trajectories with functions and obtain motion harmonics. The
eigenanalysis considers all the joints together. Fig. 4 shows
the first three eigenfunctions for dataset beat. Twenty B-
spline basis functions are used for functional representation.
The implementation of quadratic programming is from Math-
Works [25].

C. Evaluation

We evaluate our approach by comparing it with two other
trajectory generating approaches and by testing our approach
on avoiding obstacles with the guidance of via points.
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Fig. 4. First three eigenfunctions of dataset beat for each degree
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Fig. 5. The left column shows the error of our method, and the right

column shows the dissimilarity of OMPL, LSPB, and our method. Each
row corresponds to one dataset: (A) beat (B) handover (C) answer phone
(D) pull gun and (E) punch.

1) Comparing with Linear Segment Parabolic Blend:
First, we compare with the classical Linear Segment with
Parabolic Blend approach (LSPB) [26]. Let {z;} be the
world-space trajectories returned by adaptation, where each
x; = {%i1,%i2,....,zir} is a time series. The mean tra-
jectory T = %Zi\[ﬂ x; = {Z1,Za,...,Tr}. We select the
start point -y, = T + 20 - [r1,79,73]7, and the end point
Te = 27 +20-[r1,72,73)T, where 71,792,735 ~ U(0, 1). Then
we compute their configuration ¢ = f~!(zs) and g. =
f~Y(x.), where f~1() represents inverse kinematics. We
specify two timed configuration constraints: {e;} = {¢s, ge }
with time {¢;} = {1,T}. Our approach produces different
trajectories given different weighting factor . We choose
14 values of « from [0,100], and for each «, we run the
approach 20 times. Thus, there are 14 x 20 = 280 different
sets of constraints.

2) Comparing with the Open Motion Planning Library:
Second, we compare with trajectories generated by control-
based planners through the Open Motion Planning Library
(OMPL) [27].

generated trajectory in c-space (only showing 3 degrees)

>

I cbstacle
reference
a=1.00e-06
a=100e03[ o
a=5.00e-03
a=1.00e-02
constraints

Fig. 6. result of experiment clearing obstacle with sufficient guidance from
via points

The left column of Fig. 5 shows the average world-space
error of constraints {gs,¢.}. As « increases, the generated
trajectory leans towards the demonstrated data and cares
less about the constraints, and the average error increases.
Conversely, as shown in the right column of Fig. 5, the
dissimilarity of the generated trajectory goes down as «
increases. When « reaches a certain point, the dissimilarity
of our trajectories becomes lower than the dissimilarity of
both the LSPB and the OMPL trajectories, and stays low
thereafter. In addition, a range of « is observed for which
both the average error and the dissimilarity are low. The
as in such range may be considered desirable for automatic
motion generation.

The paper is accompanied by a video that shows the
NAO robot executing trajectories of the experimented tasks
generated by the compared approaches.

3) Avoiding obstacles with guidance of via points: Third,
in addition to start and end points, via points are added
to guide the trajectory. We test if the trajectory can clear
an obstacle in the configuration space. The start and end
points are inherited from the last two experiments, and the
via points are the optimal path states generated by OMPL
which clear the obstacle.

Fig. 6 shows sufficient guidance provided by the via
points. When « is small, the trajectory weighs the via points
more and by which avoids the obstacles. As a becomes
larger, the demonstrated data shows more influence, and
the trajectory hits the obstacle. Fig. 7 shows similar phe-
nomenon. In contrast, when the guidance provided by the
via points is poor, the trajectory hits the obstacle even if it
strictly adheres to the via points. This is shown in Fig. 8,
where the via point resides too close to the obstacle.

Currently, our approach does not specifically deal with
obstacles, but as the results show, it can generate obstacle-
clearing trajectories if quality via points are provided from
motion planners. This preliminary result shows the ability of
our approach to work with motion planners.
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generated trajectory in c-space (only showing 3 degrees)
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Fig. 7. result of experiment clearing obstacle with sufficient guidance from
via points, second example

generated trajectory in c-space (only showing 3 degrees)
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a=1.00e-02
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e

Hl
Fig. 8. result of experiment clearing obstacle with poor guidance from
via points

IV. CONCLUSION

The paper presents a unique motion generation approach
that uses functional analysis of motion and optimization to
consider both demonstrated motion and user constraints. The
trajectories generated by the approach have been compared
with those generated by LSPB and OMPL to demonstrate
the advantage of the balancing mechanism of the approach.
With quality guidance points provided by a motion planner,
the approach can clear obstacles in the joint space.
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