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Abstract— In this paper, we propose a novel mapping ap-
proach to map a human grasp to a robotic grasp based on
human grasp motion trajectories rather than grasp poses,
since the grasp trajectories of a human grasp provide more
information to disambiguate between different grasp types than
grasp poses. Human grasp motions usually contain complex and
nonlinear patterns in a high-dimensional space. In this paper,
we reduced the high-dimensionality of motion trajectories by
using locality preserving projections (LPP). Then, a Hausdorff
distance was performed to find the k-nearest neighbor trajec-
tories in the reduced low-dimensional subspace, and k-nearest
neighbor (kNN) regression was used to map a demonstrated
grasp motion by a human hand to a robotic hand. Several
experiments were designed and carried out to compare the
robotic grasping trajectory generated with and without the
trajectory-based mapping approach. The regression errors of
the mapping results show that our approach generates more
robust grasps than using only grasp poses. In addition, our
approach has the ability to successfully map a grasp motion of
a new grasp demonstration that has not been trained before to
a robotic hand.

I. INTRODUCTION

Learning from Demonstration (LfD) has been a powerful

mechanism for a robot to learn new tasks by observing peo-

ple’s demonstrations without any reprogramming. For most

applications using LfD, a number of human movements are

recorded during a task, then robot can mimic human motions

by reproducing similar movements, as in the demonstration

[1]. In LfD, mapping between human and robot has been a

crucial problem to resolve the correspondence issue.

The most common way of mapping from a human to

a robotic hand is direct mapping, which can be further

divided into mapping in finger joints space and in fingertip

workspace. Mapping in joint space finds the correspondence

of joint angles in a robot’s configuration space, which usually

creates a hand pose for the robotic hand similar to the

human hand pose. This is suitable for power grasps but not

for precision grasps, because it may lead to low accuracy

in fingertip positions. Mapping in fingertip space, on the

other hand, is more suitable for precision grasps, because

it computes the correspondence of fingertip positions in

workspace. In [2], neural network techniques were used to

calibrate the relationship between the Cartesian position of

the fingertips and data glove reading. Mapping between a

human hand and a robot hand is determined by a linear

translation between the two workspaces. [3] used a point-

to-point algorithm to map a human hand to a three-finger
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gripper in a teleoperation. However, in general, since most

robotic hand designs simplify the mechanical structures to

make control easier, some fingertip positions demonstrated

by humans are not reachable by all robotic hands.

Since direct mapping remains challenging, classification

approaches have been developed to avoid the correspondence

problem; human grasps are classified into different grasp

types, and human demonstration is recognized as one of

the grasp types. Many of the grasp classifications are based

on Cutkosky’s grasp taxonomy [4]. Cutkosky’s taxonomy

classifies common user-performed grasps into 16 classes

based on task requirements and dexterities. To recognize the

demonstrated grasp as one type in Cutkosky’s taxonomy,

pattern recognition techniques can be applied. [10] used

Hidden Markov models to recognize grasp type from the

taxonomy based on an entire grasp sequence. A neural

network was used to map in a configuration space. The

recognition rate was 97% for a single user, which exists

in both the training and test dataset when there are 10

grasp types. The recognition rate dropped to 65% for unseen

users that were not in the training dataset. There is no

information on performance if unseen objects were tested.

Aleotti and Caselli [6] performed grasp recognition using

static grasp poses in virtual reality for six grasp types, with

a recognition rate of 94% for two expert users without using

real objects. [7] compared the different classification methods

for recognizing six grasp types. The best recognition rate of

all the methods was 83.82% for seen users and 71.67% for

both unseen users and objects.

One motivation of this paper is to explore the trajectories

of hand joints, which provide richer information than static

poses. It is necessary to disambiguate between grasp types

that share similar static poses but differ in grasp trajectories,

because some similar poses belonging to different classes in

human configuration space may be far apart from each other

in robot configuration space. For example, the lateral pinch

and small wrap have a similar user-performed grasp pose,

whereas, due to much less dexterity in some robotic hands,

e.g. the simple three-fingered Barrett hand, the lateral pinch

has to be performed in a way distinct from the small wrap

(Figure 1).

The hand joint motion of a human demonstration can

be treated as a high-dimensional time-series. The noise and

variance lying in the motions bring difficulty to the prob-

lem. Therefore, it is beneficial if features that discriminate

motions can be preserved but unwanted variance can be re-

moved. Dimensionality reduction approaches can be used for

this purpose, since the high-dimensional hand motions may
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have a nonlinear manifold in a low-dimensional subspace.

We used locality preserving projections (LPP), presented by

He and Niyogi [8], to find the low-dimensional manifold

of the training motion data, because LPP has the strength

to project the out-of-sample data points to low-dimensional

space easily. Mapping is performed between a human and a

robotic hand in the low-dimensional subspaces.

Instead of grasp recognition that classifies a new grasp

motion as a predefined type, we use k-nearest neighbor

(kNN) regression to get the interpolation between classes,

given a new demonstration of an unknown object. The benefit

is that when the user performs an irregular grasp of an

unknown object, the regression will result in an interme-

diate grasp pose between different grasps. The distance for

kNN regression is defined by Hausdorff distance [9], which

measures the similarity between trajectories.

 

 

 

 

  

Fig. 1: Corresponding small wrap and lateral pinch of robotic

hand to human hand. They look similar to a human grasp

but are different for a robotic grasp. Left: Small wrap grasps

for a human hand (top) and a robotic hand (bottom). Right:

Lateral pinch grasps for a human hand (top) and a robotic

hand (bottom).

II. GRASP MAPPING USING TRAJECTORIES

Given a training dataset of grasp motion sequences, the

high-dimensional hand motions in the dataset usually have

undesirable properties that bias the learning results. Di-

mensionality reduction is a typical approach for finding

a lower intrinsic dimensionality of data while removing

the undesirable noise and variance and leaving a minimum

number of needed properties of the data. Typical methods

for dimensionality reduction include linear methods, such as

principal component analysis (PCA) [14] and linear discrim-

inant analysis (LDA) [15], which both find a linear transfor-

mation of high-dimensional data to their low-dimensional

counterpart. Nonlinear methods, such as isometric feature

mapping (Isomap) [11], local linear embedding (LLE) [12],

and Laplacian eigenmap (LE) [13], can model the manifold

of the data in the high-dimensional space. These nonlinear

methods do not provide a nonlinear transformation that

project new data points to the latent low-dimensional space.

We used locality preserving projections (LPP) to perform

the dimensionality reduction for the training motion data.

LPP is a linear technique that combines the benefit of both

linear and nonlinear methods [8]. It finds a linear mapping

function that minimizes the cost function of Laplacian eigen-

maps; thus, new demonstrated data can be easily projected

to the low-dimensional space by a linear transformation

computed by LPP.

In the lower-dimensional space, the k-nearest-neighbored

trajectories to the demonstrated motion can be found by

computing the similarity between trajectories. One approach

to measure the similarity between trajectories is Hausdorff

distance. The new robot grasp pose can be obtained by kNN

regression. The weight of how much each neighbor trajectory

contributes to the regression is computed by the Hausdorff

distance.

A. Dimensionality Reduction Using LPP

The problem of linear dimensionality reduction is briefly

described as follows based on [8]. Given a set of data

points x1, x2, ..., xn in high-dimensional space RD, find a

transformation matrix A that maps these n points to a set of

points y1, y2, ..., yn in low-dimensional space Rd (d << D),

such that yi = ATxi, where i is among 1 to n.

Step 1: Construct the adjacency graph. A weighted graph

G = (V,E) with n nodes can be constructed from the

dataset. An edge is put between the nodes i and j if xi

and xj are neighbors, which can be defined by either ǫ-
neighborhoods (||xi − xj ||

2 < ǫ) or k-nearest neighbors. We

do not choose ǫ-neighborhoods, because choosing an optimal

ǫ relies on a good understanding of the data.

Step 2: Choose the weights. W is a sparse symmetric n×
n matrix with wij having the weight of the edge joining

vertices i and j. To better separate the classes, we set wij = 0
if the node xj is not in the k-nearest neighbor of the node xi,

or they are not in the same class; otherwise, wij is defined by

heat kernel, wij = exp(−
∥

∥xi − xj

∥

∥

2

/t), justified by Belkin

and Niyogi [16]. Parameter t ∈ R is the heat kernel factor.

Step 3: Compute eigenmaps. Solve the generalized eigen-

vector problem:

XLXT−→a = λXCXT−→a (1)

where C is a diagonal matrix whose entries are column (or

row) sums of the symmetric W, i.e. Cii =
∑

j wji; L =
C −W is the Laplacian matrix; the ith column of matrix X

is the ith data point xi. The solution −→a is the column vector

of the transformation matrix A.

Figure 2 shows the three-dimensional representation of the

14 dimensional hand-joint trajectories, captured by a data

glove for 12 different grasp types in Cutkosky’s taxonomy

(Figure 3). Each grasp type has five trials. This demonstrates

the ability of LPP to preserve the locality of the nonlinear

structure. Although there is partial overlap between two

classes (such as the beginning of the motion sequence

because the hand is initially open for all grasp types), there

is a distinguishable variance among different classes of grasp

sequences but little in-class variance.
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Fig. 2: 3D representation of high-dimensional grasp motion

data using LPP.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3: Twelve human grasp types used for training: (a)

large wrap; (b) medium wrap; (c) small wrap; (d) adducted

thumb; (e) power sphere; (f) precision sphere; (g) tripod;

(h) lateral pinch; (i) four-finger-thumb precision; (j) three-

finger- thumb precision; (k) two-finger-thumb precision; (l)

one-finger-thumb precision.

B. Similarity among Motion Trajectories

Related approaches include Hidden Markov Model

(HMM), Dynamic Time Warping (DTW), and Hausdorff

distance. HMM measures the probability that a trajectory

belongs to a class of trajectories, demonstrated to be an

effective tool to temporal sequence recognition. DTW is an

alternative way to measure similarities by aligning sequences

that may vary in time; it has been used in matching time

series such as speech recognition and economics. Hausdorff

distance is used to establish the similarity between two sets

or trajectories. In this paper, we chose Hausdorff distance to

measure the similarity between trajectories, because Haus-

dorff distance can be applied in kNN regression for our

mapping purpose.

Hausdorff distance is described as follows. Let X and Y

be two motion trajectories, the Hausdorff distance from X to

Y is represented as:

dh(X,Y ) = max
x∈X

(min
y∈Y

(
∥

∥x− y
∥

∥)) (2)

where x and y are data points in trajectories X and Y

respectively. The distance from Y to X is represented as:

dh(Y,X) = max
y∈Y

(min
x∈X

(
∥

∥x− y
∥

∥)) (3)

The distance between the two trajectories X and Y is

defined by:

DH(X,Y ) = max(dh(X,Y ), dh(Y,X)) (4)

The Hausdorff distance handles three cases of similarity

between grasp motion sequences, illustrated in Figure 4. The

two trajectories start from approximately the same position

because they share the same initial pose.

Figure 4a demonstrates Case 1, where trajectory Y is

roughly a part of trajectory X. This usually happens for the

same grasp types but slightly different object sizes. The inter-

trajectory distance, therefore, becomes the distance between

the end poses of X and Y.

In Case 2 (Figure 4b), trajectory X and Y share the same

start and end points but differ in intermediate paths. This

usually happens when the two grasp types are different but

share a similar end pose, like a lateral pinch and a small

wrap, which actually span a larger Euclidean volume in

robotic hand configuration space. In this situation, Hausdorff

distance is beneficial for distinguishing between two grasp

types that share ambiguous grasp poses.

Case 3 (Figure 4c) is the general case, in which trajectory

X and Y differ in intermediate paths as well as end points.

                                             

                                                                   (a) 

 

                      (b)                                                      (c)                                                         

Traj Y 

Traj X 

Start 

End 

D 

Traj Y 

Traj X 

Start 

End 

D 

Traj Y 

Traj X 

Start 

End 

D 

Fig. 4: Three cases of Hausdorff distance between two grasp

types. (a): Case 1, trajectory Y is a part of trajectory X; (b):

Case 2, trajectory X and Y meet at the end but differ on the

way; (c): Case 3, general case, where trajectories X and Y

go further away until the end.

Hausdorff distance can also be modified to other metric,

such as mean pairwise distance, depending on the applica-

tions.

C. Distribution of the Robot Grasping Poses

The corresponding training dataset of robot grasp motions

is collected by manually commanding the grasp motions of
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the robot hand. The velocity of the motion does not affect

the low-dimensional projection because the dimensionality

reduction disregards the temporal information (dynamics).

No matter what velocity is commanded to the robot, all

fingers are closed jointly to form a hand closure. In this

paper, we use a Barrett hand to execute the testing re-

sults. The Barrett hand has four degrees of freedom – the

flexion/extension angle of each of the three fingers and

one adduction/abduction angle. The three fingers of the

Barrett hand are commanded to the same joint values, so

the dimensionality can be reduced to two dimensions. The

2D distribution of grasp types is shown in Figure 5. Since

the Barrett hand is much less functional than a human hand,

fewer grasp types are defined. For example, four-finger-

thumb, three-finger-thumb, and two-finger-thumb (Figure 3)

in Cutkosky’s taxonomy can be grouped together because the

Barrett hand has only three fingers. Overall, the Barrett hand

grasps are restricted to six basic types: large wrap, medium

wrap, small wrap, power sphere, precision sphere, and two-

finger precision. Precision sphere and tripod correspond to

the robot grasp type of precision sphere, as depicted in Table

I.

TABLE I: Corresponding grasp types between the human

and the robotic hand.

Human Grasp Types Robot Grasp Types

Large Wrap Large Wrap

Medium Wrap Medium Wrap

Small Wrap
Adducted Thumb Small Wrap

Power Sphere Power Sphere

Precision Sphere
Tripod Precision Sphere

Lateral Pinch
Four-finger Thumb
Three-finger Thumb
Two-finger Thumb
One-finger Thumb Precision

From Figure 5, we can observe that the poses of large

wrap and precision grasp are close to each other, although

they are very different in human configuration space. On

the other hand, although small wrap and precision are far

away from each other, they are close to each other in human

configuration space.
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Fig. 5: 2D representation of the Barrett hand grasp types in

its configuration space.

D. kNN Regression for Grasp Mapping

Hausdorff distance can be used for kNN classification as

well as kNN regression. Here, we choose kNN regression to

map a grasp of an unknown object to the robotic hand. Given

a testing grasp trajectory q, k-nearest neighbor trajectories

x1, x2, ..., xk in the training dataset are found. The weight

of each neighbor trajectory contributing to the regression can

be defined by:

W (q, xi) =
exp(−DH(q, xi))

∑k

i=1
exp(−DH(q, xi))

(5)

It is clear that the weights defined above will satisfy:

k
∑

i=1

W (q, xi) = 1 (6)

Thus, the corresponding robot grasp pose is defined as:

r =

k
∑

i=1

W (q, xi)ri (7)

where ri is the robotic hand pose of ith nearest neighbor in

the dataset.

III. EXPERIMENT

A. Experimental Setup

We measured the sequence of hand motions using a right-

handed 5DT data glove 14 Ultra, with 14 fiber-optic-based

bend sensors measuring the amount of bending, as shown in

Figure 3. The data glove captures proximal interphalangeal

(PIP) articulations and metacarpophalangeal (MP) joints for

all five fingers and for MP joints between every two neigh-

bored fingers. The flexure resolution is 12 bits for each

sensor, and the minimum dynamic range is 8 bits. The sensor

does not measure the real joint angles; instead, it measures

the proportion of in its full range of motion. The bending

values are scaled in between 0 and 1, with 0 being fully

open and 1 being fully closed. Hand motions were sampled

at a rate of 100 Hz.

In the experiment, 18 everyday objects were tested (Figure

6). During training and testing, the grasps were performed

by the same user but on different objects. Four subjects

participated in the experiment. During training, the users

were asked to apply one of the 12 predefined grasp types,

with five trials for each type. During testing, each object was

performed by the participants for two trials. In the first trial,

the subjects were asked to perform a regular predefined grasp

type. In the second trial, the subjects were asked to perform

an arbitrary grasp of their own choice that did not necessarily

exist in the predefined type. For example, a subject was asked

to grasp a box using a large wrap grasp for the first trial.

Then, in the second trial, the subject applied his own grasp,

as shown in Figure 7a, in which he wrapped four fingers

around the box (without the little finger, which was fully

closed) rather than applying a regular large wrap using all

fingers.
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Fig. 6: Daily grasping objects used in the experiment.

To evaluate the regression results using grasp trajectories,

we compared our results to regression using grasp poses,

where the weights for the kNN regression were obtained

from the distance between hand poses. The grasp poses

were extracted from the grasp trajectories in the training

dataset. Similar to the dimensionality reduction we applied

on grasp trajectories, the dimensionality of the 14-DOF hand

poses were reduced using LDA. LDA [15] is a popular

linear dimensionality reduction approach that projects data

points into subspaces, maximizing linear class separability

and minimizing the within-class variance.

The regression results were applied to a 6-DOF Fanuc

L200IC robotic arm and a Barrett hand. During the execu-

tion, the positions and orientations of the robot hand were

commanded before the regression results were executed. The

strain gauge embedded in each finger measured the joint

torque, which provided feedback for the force control. The

force control is necessary for the robot to reach a force

closure, so it can compensate the error between the force

closure pose and the estimated hand grasp pose.

B. Execution Results

We did not evaluate the success rate of the grasp because

it is highly related to the positions and orientations of the

robotic hand relative to the objects. Instead, we computed

the mean absolute percentage error between the estimated

robotic hand grasp poses and the final force closure pose,

as shown in Table II. The error of regular grasps was

computed from the first trial of each object specified as one

of the predefined grasp types; the error of irregular grasps

was obtained from the second trial of each object that was

arbitrarily performed by the user. The results in Table II show

that regression using trajectories has a lower error than using

static poses for both regular grasps and irregular grasps. The

significant difference between errors of trajectory and pose is

diminished by averaging over all grasp types. The trajectory

and pose methods result in similar mean errors of 5.15%

and 5.02%, respectively, for six of the regular grasp types:

large wrap, medium wrap and 1-, 2-, 3-, and 4-finger-thumb

precision; the mean error of the other 6 grasp types – lateral

pinch, small wrap, adducted thumb, tripod, power sphere

and precision sphere – is highly decreased to 6.27% by the

trajectory approach, compared to an 11.56% error from the

TABLE II: Mean absolute percentage error between esti-

mated grasp poses and the best grasp poses.

Testing Grasps Trajectories Poses

Regular Grasps 5.72% 8.24%

Irregular Grasps 7.38% 10.47%

pose approach.

Figure 7 illustrates three irregular grasps of a box, a

pair of pliers, and a gun. The first column is the human

demonstration. Columns 2 and 3 compare 3D representation

of 14D demonstrated motion trajectories and poses. The

trajectory marked by the black stars is the testing grasp.

Column 4 shows the execution results from the robot.

In Figure 7a, the participant demonstrated a large-wrap-

like grasp of a box, where the little finger closed more

than the other fingers. Figure 7b shows that the trajectory

of the demonstrated grasp was similar to the trajectories

belonging to the large wrap grasp in the training dataset.

The five nearest neighbors of this demonstration were all

trajectories in large wrap grasp type. Figure 7c shows that

the nearest neighbors of the demonstrated poses were the

four-finger precision and tripod grasp types. The regression

error of trajectory approach is 4.69%, compared to an error

of 12.98% from pose approach.

The second row illustrates a grasp of a pair of pliers. The

nearest trajectories belonged to small wrap (Figure 7f), and

the nearest poses belonged to small wrap and lateral pinch

((Figure 7g). In this example, small wrap is more desirable.

The error in robotic execution (Figure 7h) is 6.56% from

trajectory approach, compared to an error of 10.86% from

pose approach. The robotic hand needs to close more in order

to fit the shape of the pliers.

The third row is the example of grasping a gun. The user

employed a medium-wrap-like grasp, but the index finger

was put on the trigger. The trajectory of grasping a gun was

between 4-finger precision and 3-finger precision (Figure 7j),

and the nearest neighbor of the grasp pose is three-finger

(Figure 7k). The motion shows a more dexterous motion

than wrap grasps, with an error of 6.78% for both methods.

IV. CONCLUSIONS

In this paper, we propose a novel approach of mapping

based on human grasp motion trajectories rather than grasp

poses, since grasp trajectories provide richer information for

distinguishing between different grasp types. LPP has been

selected to perform dimensionality reduction on the hand

grasp data. A mapping was performed between the human

and the robotic hand in the low-dimensional subspaces.

The Hausdorff distance was used to measure the similarity

between trajectories. kNN regression was used to map a new

demonstrated grasp into the robotic hand.

Although mean absolute percentage errors, averaged over

all grasp types, have less significant difference between

regression by trajectory and pose, the trajectory approach

greatly improves the ability to distinguish some grasp types
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Fig. 7: Three grasp examples: Column 1, human demonstration; Column 2, 3D representation of 14D hand motion trajectories

using LPP; Column 3, 3D representation of 14D static hand pose using LDA; Column 4, execution results of regression

using hand motion trajectories.

over the pose approach. Experimental results have shown

the ability of the proposed method to map the grasp of

previously unknown object to the robotic hand. Mapping

using the distance between trajectories is more robust than

using static poses.

One limitation of the current method is that it is not

feasible for new users because of the different geometry

between human hands. For every user, a training process is

necessary to guarantee a low regression error. To tackle this

problem, calibration is needed to map from the data glove

sensor values to the joint values.
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