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Abstract—This paper presents a novel force learning frame-
work to learn fingertip force for a grasping and manipulation
process from a human teacher with a force imaging approach.
A demonstration station is designed to measure fingertip force
without attaching force sensor on fingertips or objects so that
this approach can be used with daily living objects. A Gaussian
Mixture Model (GMM) based machine learning approach is
applied on the fingertip force and position to obtain the
motion and force model. Then a force and motion trajectory is
generated with Gaussian Mixture Regression (GMR) from the
learning result. The force and motion trajectory is applied to a
robotic arm and hand to carry out a grasping and manipulation
task. An experiment was designed and carried out to verify the
learning framework by teaching a Fanuc robotic arm and a
BarrettHand a pick-and-place task with demonstration. Exper-
imental results show that the robot applied proper motions and
forces in the pick-and-place task from the learned model.

I. INTRODUCTION

Learning from demonstration (LfD ) has been a powerful

mechanism to reduce the complexity and burden of searching

or generating a successful action for tasks. For most applica-

tions using LfD, a number of human movements are recorded

during a task, then analyzed and modeled with machine

learning algorithms. Motion elements are decomposed and

learned. Relations between motion elements are modeled

from the distributions of the demonstrated movements. With

the learning results, a robot can mimic the human motions

by reproducing similar movements as in the demonstration

[1]. For example, grasping and releasing movements during

a pick-and-place task demonstrated by a human worker can

be tracked with vision-based motion tracking system and

decomposed to transport and grasp phases [7]. For some

cases, a force sensing glove was used to better segment the

movement [19], [10].

The existing LfD frameworks have not yet included force

elements that provides important additional dimensions for

human dexterous grasping and manipulation demonstration

and learning. The force is usually treated as a feedback

control element for optimal control problem [13], instead of

as flexible distributions for learning. In neuroscience, many

research studies have been devoted to understanding human

grasping force and gripping strategies. Soechting and his

team [14] have measured the contact forces at the digits

and decomposed the grip force into two components: a

manipulating force responsible for accelerating the object

and a grasping force responsible for holding the object
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steady. Johansson and his team [6] have discovered that

humans attempt to avoid horizontal tangential forces even

at a small cost in total force and slight object tilt to keep

tangential torques small and to compensate for variations

in digit contact positions in multidigit manipulative tasks.

Many research results have shown that there are complicated

patterns in the multidigit grasping and manipulation forces,

which are related to task, hand motion and gesture.

The fingertip force is not always correlated to the finger

motion that is regularly tracked in LfD frameworks since ex-

erting fingertip forces do not necessarily require any obvious

finger motion. Since applying force is an important aspect of

the interacting with the environment, and essential for many

tasks, it is not surprising that humans exhibit complicated

force strategies for different tasks. Measuring the force along

with the hand motion, and understanding human force strate-

gies is important for learning grasping and manipulation.

However, unlike motion tracking system that are usually

not intrusive, most grasping force measurement approaches

require force sensors being placed on the grasping points,

either on the object or on the demonstrator’s fingertip. In

many neuroscience studies, specially designed objects have

to be fabricated to incorporate force sensors and the points

of grasping have to be defined beforehand, which poses big

limitation for grasping demonstration.

Previously, we have presented a force imaging approach

to estimate fingertip force from the images of the back of

the fingertip. That approach does not encumber a subject

and there is no need for sensor fabrication or embedded

sensors on the objects so that everyday objects can be used

for studies and demonstration. The existence of low-cost

cameras and image processing methods readily performed

on PCs makes the instrumentation of such an approach

relatively inexpensive. We have shown that by imaging the

coloration changes in the fingernail and surrounding skin

with an external camera, normal and shear forces can be

estimated with an accuracy of 5–10% for a force range of

up to 8 N. However, individual calibration was required, and

a generalized least squares (GLS) estimator was used [18],

[15]. We also have estimated the dynamic features of the

approach and found that the time constants were different for

different force levels and directions (loading and unloading)

and the typical time constant is around 0.2 second [16]. The

slow dynamic features of the approach may not pose a big

limitation for many grasp studies and applications, as the

finger force frequency is fairly low. For example, during

surgical training, the majority of the frequency content is

below 5 Hz; during tissue grasps, the average grasp force

frequency is approximately 1 Hz [2].
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In this paper, we propose a novel grasping and manip-

ulation learning framework that trains a learning model

with both motion and force data so that with our force

imaging approach, a robot can learn the demonstrator’s

fingertip motion and force for a grasping and manipulation

process. The recorded motion and force from demonstrations

were processed with Gaussian Mixture Model (GMM) based

machine learning approach which was presented by Calinon

et al in [3]. To apply the learning results to a robotic system,

a force and motion trajectory was generalized with Gaussian

Mixture Regression (GMR) from the trained GMM, and

was mapped to the robotic system. We have implemented

the grasping and manipulation learning framework in our

lab, analyzed the measurement and learning results, and

successfully applied a learning result to a robotic hand-arm

for a pick-and-place task.

II. GRASPING AND MANIPULATION LEARNING

FRAMEWORK

A. Framework Overview

We propose a full grasping and manipulation learning

framework that is capable of measuring and learning from

human grasping and manipulation processes. The design of

the framework is illustrated in Figure 1. It is composed of

three systems: a fingertip force estimation system, a grasping

and manipulation learning from demonstration (LfD) system,

and a robotic system that applies the learning results. Among

them, the motion and force LfD system is the center piece

of the framework. It measures not only motion, but also

force in demonstrated grasping and manipulation processes.

The captured motion and force data is then used to train

a Gaussian Mixture model that represents the joint distri-

bution of the data. The learned motion and force motion

representing skills is then mapped to the robotic system to

generate proper motions and force to carry out learned tasks.

The fingertip force estimation system measures the fingertip

force in grasping and manipulation process from the color in

the corresponding fingernail and surrounding skin based on

the trained models of the relation between the force and the

color, so that the motion and force LfD system can measure

the fingertip force without a force sensor embedded on the

object or fingertip.
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Fig. 1. Presented Framework of grasping and manipulation LfD system.

B. Fingertip Force Estimation System

The fingertip force is measured remotely from the color

of the corresponding fingernail and its surrounding skin. The

relation between the color and the force can be modeled with

a generalized least-squares model [18]:

f̂ = (BT
Σ

−1
B)−1

B
T
Σ

−1(h− a) (1)

where h is vector with the color reading of all the pixels in

the fingernail and surrounding skin. Parameter vectors a and

B are learned linear parameters relating the color response

to the force. The covariance matrix Σ is estimated from the

data which represent the weights of all pixels contributing to

the estimation of force [18].

The least-squares model needs to be trained individually

for every finger that the system wants to measure force on.

A training process is designed to automatically apply a serial

of force on fingertip and record force and the fingernail

images at the same time. The sequence of force is designed

to cover the potential 3D force cone the finger can exert with

reasonable density. The fingernail images are segmented,

aligned and normalized with orientation compensation [17].

The pixels on the fingernail and surrounding skin in the

processed fingernail images are then organized into a color

vector for the estimation model Equation 1. With enough

training data, the generalized least-squares model can esti-

mate fingertip force fairly accurately – usually has error at

around 8% [18].

The trained fingers can be used at the motion and force

demonstration station. In the proposed grasping and manip-

ulation learning framework, multiple cameras are setup to

continually monitor the fingernail images during a dynamic

grasping and manipulation process. Since the illuminations

are not identical between the training station and the demon-

stration station, the HSV color space is used.

C. Motion and Force LfD system

With the remote force measurement approach and a finger-

tip tracking system, demonstrated hand motion and force can

be captured and recorded. The recorded demonstrated mo-

tions and forces are then modeled with a Gaussian Mixture

Model (GMM) that summarizes a probabilistic representa-

tion of multiple demonstrations [3]. Different from previous

approaches, the proposed motion and force LfD system has

extra three dimensions that represent a 3-dimension force

vector. At any time point, a 6-dimension motion vector and a

3-dimension force vector are combined to represent an action

state of a task.

The demonstrated motion and force can be encoded to-

gether by GMM. Given a set of data points of dimensionality

D, one dimension is time steps, while the other dimensions

are motion and force trajectories. The dataset is defined by

ξj = {ξt,j , ξm,j , ξf,j}, where j=1, 2, ... N is the number of
trials, ξt,j represents the time step, ξm,j ∈ ℜ6 is the position

and orientation vector, ξf,j ∈ ℜ3 is the force vector. The

dataset is modeled by a mixture of Gaussian distributions

of K components. K is defined as 4 in the pick-and-place

task, for we segmented the whole grasping process into 4

stages - grasp the object, lift the object, place the object

back, and release the object. The GMM model is defined by

the function:
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p(ξj) =

K
∑

k=1

p(k)p(ξj |k) (2)

where p(k) is the prior, and p(ξj |k) is the conditional
probability of the jth data given the kth Gaussian distribution.

They are further defined as:

p(k) = πk (3)

p(ξj |k) = N(ξj ; µk, Σk)

=
1

√

(2π)D|Σk|
e−

1

2
((ξj−µk)T Σ−1

k
(ξj−µk)) (4)

for k = 1 to K . The parameters of prior πk, mean µk,

covariance matrix Σk of the Gaussian Mixture Model are

estimated by an expectation-maximization (EM) algorithm

[5], which maximize the likelihood of P (ξ|π).

D. Mapping Learning Results to Robotic System

Once the demonstration model is built by GMM, smooth

force and motion trajectories are retrieved from the model

for the robot using Gaussian Mixture Regression (GMR)

[4]. Given a joint probability distribution p(ξt, ξm, ξf ) of the
dataset modeled by a GMM, GMR estimates the conditional

expectation E[p(ξm, ξf |ξt)]. The regression thus produces
the expectations of the motion and force at each time step

ξt, which provide smooth motion and force trajectories along

the time space.

The generated motion and force trajectory is then applied

to a robotic system with the trajectory as its control in-

put. Since the motion is represented with the location and

orientation of the hand, an inverse kinematics approach is

used to compute the joint angles of the robotic hand to

generate the desired fingertip motion. A hybrid motion and

force controller is applied to ensure that the robot hand

keeps contacting an object with a certain force, i.e., the

force learned from the user. The hybrid motion and force

control allows the separation of the position and force in

two independent subspaces. Hence the position and force

are controlled simultaneously.

In this paper we aim to illustrate our LfD framework, so

we make two simplifications to the problem. First, objects are

held vertically, which makes sure that the contact force are

uniformly distributed on each finger. Another simplification

is that we only control normal force, due to the limited DOF

of the Barrett hand used in our experiment.

The motion controller transfers the error between desired

and actual position of the fingertip to a joint angle using

inverse Jacobian matrix. The force controller transfers the

error between desired force and actual force into a joint

torques using transposed Jacobian matrix. Both outputs are

combined together at the end and converted to joint angles.

III. FRAMEWORK IMPLEMENTATION

A preliminary grasping and manipulation learning frame-

work is constructed in our lab. Figure 2 shows a robotic

work cell on the left and the motion and force LfD on the

right. We setup two cameras on two circular rails to track the

fingertip position and measure the fingertip force from the

color in the corresponding fingernails and surrounding skin.

The horizontal and vertical position is extracted from the

2D image taken by the camera. Figure 3 shows our training

platform for fingertip force and color modeling. For a human

demonstrator, the force and color calibration is executed once

and does not need to be re-calibrated for each demonstrated

task.

Fig. 2. The robot grasping and manipulation station (left) and the motion
and force demonstration station (right) in the grasping force learning from
demonstration framework.

A. Fingertip Force Modeling Setup
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Fig. 3. (A) The 5-DOF calibration stage based on two Novint Falcon
Haptics Controllers; (B)The hand rest with finger restraint; (C) the kinematic
model of the calibration station.

An inexpensive automated calibration system is designed

to apply calibration force trajectory on a human fingertip

with high precision and take calibration images and force

data simultaneously (Figure 3A). The calibration system is

composed of a 5-DOF actuation device, a 6-axis force sensor,

a video camera, a hand-rest stage, and a finger restraint.

The actuation device is an integration of two Novint

Falcon devices linked by two universal joints and a rigid

bar to provide 5-DOF motion and force, with feedback from

an ATI Nano 17 force/torque sensor. The kinematic model

of the actuation device is shown in Figure 3(C). A force

controller is designed with an inner position control to meet
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the calibration goal and requirement. The system was capable

of controlling force with a settling time of less than 0.25

seconds, and tracking force trajectories with an interval of

0.3 seconds and step sizes of 0.1 N and 1 N·mm. Root-mean-
squared errors are 0.02− 0.04 N for forces and 0.39 N·mm
for torques. The design and implementation of the actuation

device was described in details in Ref. [9].

A Point Grey Flea video camera is used to take training

images with the force reading from the force sensor. The

force sensor reading is sampled at 1 kHz and the video

camera works at 30 frame-per-second (fps).

A large wooden hand rest is used to support hand weight

during calibration (Figure 3B). The wide base of the hand

rest provides stability to the structure and allows for the

addition of the unbalanced weight of the aluminum insert and

finger restraint. The finger restraint has an L-shaped base that

conforms to the tree shape of the wooden hand rest, capable

of restraining a finger on either hand. The constraint prevents

unwanted finger movement that may cause disturbances and

noise in the collected data.

B. Motion and Force LfD Station

Both position and force are measured with two Point Grey

Flea video cameras with 16 mm lenses, attached on two

parallel half circle rails as shown in Figure 4A. The number

of the cameras and the selection of the lenses on those

cameras are decided based on the tasks. For a pick-and-place

task using two fingers in a confined space, two cameras with

relative narrow lenses are sufficient. More cameras would

certainly provide better coverage for larger motions.

(A) (B)

Fig. 4. (A) Grasping force demonstration platform; (B) The robot grasping
and manipulation station.

The two cameras are configured to capture the images of

the fingernail and surrounding skin areas of thumb and index

finger along with the fingertip motion during a grasping-

placing process. Software was developed to capture the

fingertips of both index finger and thumb from both cameras

simultaneously at 30 frame-per-second (fps). The fingertips

are tracked and segmented from the background and then

the calibrated force estimation model is used to estimate

the force of both fingers during the tasks. The estimated

force then combined with the fingertip motion to provide

the training data.

C. Robot Grasping and Manipulation Station

As shown in Figure 4(B), the learning results from the

demonstration are applied to a 6-DOF Fanuc L200IC robotic

arm and a BarrettHand. Two ATI Nano 17 force sensors

are embedded in two fingertips of the BarrettHand to mea-

sure fingertip force for force control. A Point Grey Firefly

MV video camera is mounted on the wrist of the Fanuc

robotic arm to provide visual feedback. Computer software

is developed to control both the Fanuc robotic arm and the

BarrettHand with the feedback from the Point Grey camera

and the Nano 17 force sensors in real-time. The BarrettHand

has a control loop running at 50 Hz and the Fanuc arm has

control loop running at 100 Hz. The low level controller

Fanuc R30A runs the inverse kinematics and motor control

at 1000 Hz.

In software, a visual servoing controller uses the visual

feedback from the Point Grey camera to guide the robot arm

to the right grasping position. The Fanuc R30A controller

then moves the robot arm to the right position related

to the object. After the robot arm reaches the grasping

position, a force input is generated from the learning from

demonstration to control the BarrettHand to apply proper

force on the object with the feedback from the force sensor.

IV. EXPERIMENTAL RESULTS

We have designed an experiment to verify the proposed

grasping force learning from demonstration framework. For

a pick-and-place task with two fingers, only the normal pinch

force is controlled for grasping. Therefore we only measured

and learned normal grasping force and compare the results

with the readings from two thin-film force sensors. First a

volunteer used the calibration station to calibrate his index

finger and thumb with a designed normal force trajectory

in the range of 0 to 8 N [9]. Three sets of training data

were taken. One original image is shown in Figure 5A.

Its fingertip image after segmentation and normalization is

shown in Figure 5B.

A. Fingertip Force Measurement

(A) (B)

Fig. 5. (A) The fingertip image after segmentation and normalization; (B)
Original image taken with the camera at the calibration station.

To verify the calibration result, we used two sets of

training data to train the GLS model in Section 1, and

then verify it with the third data set. Figure 6 shows the

verification result of the calibration. The root-mean-square

(RMS) error is 0.3012 N; that is consistent with our previous

finding [18].
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Fig. 6. The estimation result of the GLS model on a new verification data
set. (A) The verification result for an index finger; (B) the verification result
for a thumb.

To compare the result of the force measurement from

our imaging approach to the embedded sensor approach, we

placed two FlexiForce force sensor on one object for a pick-

and-place task. FlexiForce is thin film force sensor which

measures one dimensional pressure. The other types of force

sensors are able to measure higher dimensional and more

accurate forces, but are much larger in size. Applying the

trained GLS model, the force during a pick-and-place task

is estimated and displayed in Figure 7. For comparison, the

force measured with the FlexiForce thin film force sensor

is displayed in Figure 8, showing a large noise of the

force measurement by FlexiForce sensors. According to Park

(1999) [12], the repeatability of the FlexiForce senor ranges

from 75% to 91% and it is worst for lowest forces.

Compared to regular force sensors, the imaging approach

to measure force is not intrusive, though accurate enough for

the applications of force measurement and grasp studies.
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Fig. 7. Estimated force during a pick-and-place process from the images
of the fingernail and surround skin. (A)The estimated force on the index
finger; (B) The estimated force on the thumb.
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Fig. 8. The measured force by the FlexiForce sensor. (A) the measured
force on the index finger; (B) The measured force on the thumb.

B. Motion and Force LfD Model

Several objects are used to verify the grasping force

learning from demonstration framework. For example, Figure

9 shows the demonstration grasping force reading from index

finger of picking and placing a red pepper and position along

the vertical direction of the end-effector. Most attentions

are paid to the normal force and height because they are

highly related to each other in the pick-and-place task. The

dataset of force and motion during 3 trials of pick-and-place

demonstration is modeled as in Section II-B. The GMM

model is shown in Figure 10. The number of components is

selected to be 4 so that the components naturally represent

the mental intentions of the human user - grasp, lift, place

and release.
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Fig. 9. The demonstrated dataset.
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Fig. 10. The GMM model result.

C. Apply Learning Result
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Fig. 11. Generated trajectory with GMR.

The generated GMR trajectories (Figure 11) are input to

the controller as control signals. Figure 12 is the execution

result, showing the actual force and motion trajectories the

robot applied. At the beginning, the robot increases the

contact force with the object for holding the object, while the

position remained before a certain force is achieved. Then

the robot picks up the object away from the table and then

place back the object, while the controller controls the robot

to keep holding the object using a certain force. When the

object is placed back to the table, the robot releases the

object.
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Fig. 12. The normal force and height results recorded from the robot
execution

V. CONCLUSIONS

This paper presents a novel motion and force learning

framework that allows a robot to learn fingertip force for

a grasping and manipulation process from a human teacher.

In addition to demonstrated motions, the fingertip force is

measured with our previously developed image-based force

estimation approach, which provides us important additional

dimensions for the robot. A demonstration station has been

setup with two video cameras to capture the forces on the

fingertips of an index finger and a thumb. The Camera

system is beneficial to grasping demonstration compared

with force sensors, due to its nonintrusive yet accurate

attributes. However, the camera system has its limitations,

that is, the demonstrated motions have to be in range of

the cameras. This limitation can be solved by adding more

cameras.

The measured fingertip forces of two opposite fingers are

modeled with GMM based machine learning approach. The

learned force distributions are then used to generate fingertip

force trajectories with a GMR approach. Instead of defining

a certain grasping force value, force trajectories are used to

control the robotic fingers in contact with an object to carry

out a learned grasping and manipulation task.

The proposed framework and the force learning concept

have been verified with several grasping tasks. The esti-

mated force with our image-based fingertip force estimation

approach appears to produce more consistent measurement

than the FlexiForce thin film force sensor. The learning

results allow the robot to apply proper force on the objects.

The learned force are controlled using Hybrid motion and

control so that both motion and force can be simultaneously

controlled in separate space. In this study, we only recorded

normal force on an index finger and a thumb. Human fingers

are capable of controlling and exerting more complicated

forces in higher dimensions.

Grasping force synergy studied in neuroscience can also

be learned from demonstration and be taught to robots for

various tasks. In the future, we plan to expand our framework

to include shear force and torque. We will integrate the

current setup with a 5DT dataglove and a motion tracking

system to capture more detailed hand and arm motion. More

fingers will be tracked and monitored to measure fingertip

forces on them. We will also use our framework to study

and learn grasping force and motion for more complicated

manipulation tasks. Incorporated with motion and force, this

framework would provide a way to learn the strategy of how

human interact with the environment during manipulation.
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