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Abstract—3D reconstruction of internal organ surfaces pro-
vides useful information for better control and guidance of the
operations of surgical tools for minimally invasive surgery (MIS).
The current reconstruction techniques using stereo cameras are
still challenging due to the difficulties in correspondence matching
in MIS, since there is very limited texture but significant specular
reflection on organ surfaces. This paper proposes a new approach
to overcome the problem by introducing weakly structured light–
actively casting surgical tool shadows on organ surfaces. The
contribution of this paper is two-fold: first, we propose a robust
approach to extract shadow edges from a sequence of shadowed
images; second, we develop a novel field surface interpolation
(FSI) approach to obtain an accurate and dense disparity map.
Our approach does not rely on texture information and is able to
reconstruct accurate 3D information by exploiting shadows from
surgical tools. One advantage is that the point correspondences
are directly calculated and no explicit stereo matching is required,
which ensures the efficiency of the method. Another advantage is
the minimum hardware requirement because only stereo cameras
and a separated single-point light source are required. We
evaluated the proposed approach using both phantom models and
ex vivo images. Based on the experimental results, we achieved
the precision of the recovered 3D surfaces within 0.7mm for
phantom models and 1.2mm for ex vivo images. The comparison
of disparity maps indicates that with the addition of shadows,
the proposed method significantly outperforms the state-of-the-
art stereo algorithms for MIS.

Index Terms—Dense surface reconstruction, low texture, mini-
mumly invasive surgery, stereo reconstruction, weakly structured
light

I. INTRODUCTION

DUE to the benefits of minimized trauma, shorter hospi-
talizations, and lower infection risk, minimally invasive

surgery (MIS) has been considered an alternative to open-
cavity surgery. However, there are still many challenges in
the current MIS systems, such as narrow field of view and
incapability of capturing and displaying depth. The real depth
information of the actual internal organs and the surgical
scene is valuable to surgeons and can potentially be used with
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many cutting-edge computer aided interventions such as 3D
surgery visualization and planning. Other benefits of the intra-
operative depth information is discussed in [1], [2]. Recently,
there has been an active research interest in how to recover
3D surfaces of low-texture organs. In [3], constraint-based
factorization method of structure from motion was used to
reconstruct the 3D structure from endoscopic video. A couple
of methods with a focus on cardiac surgery have been proposed
to estimate the depth information by tracking feature points
on a surface [4]–[6]. However, specific geometric models are
usually assumed in order to use the sparse feature points to
estimate the dense surface. For example, B-Splines were used
to model the surface in [4] and Thin-Plate Splines (TPS) were
assumed in [5], [6].

On the other hand, stereo reconstruction was considered one
of the most practical ways to recover depth for MIS, since no
extra sensors were required [1]. As stereo imaging systems
for MIS become more popular, there is more research on how
to implement stereo reconstruction. Stereo reconstruction has
been a classic method to recover depth information and is able
to provide dense reconstruction when a robust correspondence
matching is performed on a scene with enough distinguishable
texture. Reviews of traditional stereo reconstruction can be
found in [7], [8]. However, the surfaces of most organs inside
the abdomen do not have rich distinguishable texture, and
the wet, shiny, and curved surface creates broad specular
reflection, both of which make stereo reconstruction very
difficult. To solve these problems, Stoyanov et al. [1] proposed
to start with a sparse set of feature point correspondences and
propagate disparity information using information from nearby
regions. Later, Stoyanov’s method was further developed and
combined with sparse simultaneous localization and mapping
(SLAM) to create a dense tissue model in [2]. The method
continues to update new images with the existing model and is
able to dynamically expand the field of view of a laparoscope.
However, Stoyanov’s method has difficulty in low texture
areas, because propagation becomes difficult when there is not
enough texture available.

To recover a surface with low texture, some researchers
aimed to actively project patterns on the tissue surfaces. Wu et
al. developed imaging systems which projected grid patterns
[9] or laser strips [10] to reconstruct the 3D structure of cervix
and assist the diagnosis of cervical cancer. Fuchs’s team [11]
designed and implemented a miniature projector that projected
structured stripe patterns on the abdominal organs. However,
the stripe patterns are distractive, and the projector requires
special insertion ports, which would increase surgery difficulty
and time. Instead of relying on extravagant stripe patterns, we
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observed that during the surgical process, shadows generated
by a surgical tool could provide a weak but structured pattern,
which gives a cue to generate “correspondences.”

It is worth noting that, not surprisingly, both in MIS and
computer visualization, researchers have noticed that shadows
can significantly improve depth perception [12]–[14]. The
study of how to generate optimum shadows in terms of contrast
and location of shadow-casting illumination by using a second
endoscope was introduced in [12]. A secondary light source
was also used in [13] to carefully cast an “invisible shadow,”
which was digitally detected and enhanced to provide a depth
cue. It should be noted that in order for the cameras to capture
the shadows cast by surgical tools, the cameras and light
source should be separated, which is also adopted in this paper.

To the best of our knowledge, the first work to use actively-
cast shadows to recover low texture surface was introduced
in [15] with a method called “weakly structured light” [15].
However, that method required a calibrated light source and
placed two perpendicular planes in the scene. These two
requirements are difficult to be satisfied, as the space is very
limited in an MIS environment. In this paper, we remove these
two requirements by using stereo cameras and a separated
light source. Our method first extracts the shadow borders
and interpolates them with epipolar lines to generate disparity
maps. Other than being able to achieve dense and accurate
reconstruction results, this approach does not require stereo
matching, which is much more computing-intense than shadow
extraction in the proposed method. Therefore, we expect that
this method could be much more efficient than the traditional
stereo-matching-based approaches with an optimized imple-
mentation. Another advantage of our method is that only
stereo cameras and a separated light source are required, since
surgical tools are part of a standard MIS setup and surgeons
wave surgical tools in front of organs already. It should be
noted that our method only recovers a relatively small area of
tissue surface at one time due to the narrow field-of-view in
MIS as noted in [1]. To overcome this limitation, as proposed
in [2], camera localization using SLAM technique can be
integrated to combine small tissue surface patches recovered at
different time and obtain a larger recovered 3D tissue surface.
The SLAM technique is beyond the scope of this paper and
will not be discussed here. We have evaluated the proposed
approach on different phantoms and ex vivo organs and report
the accuracies of reconstructed surfaces in comparison with
state-of-the-art algorithms.

II. METHODS

A. System Overview
We propose to use weakly structured light to recover the

dense 3D surfaces of internal organs with stereo cameras. Our
method does not require a projector or laser stripe. Instead,
similar to [15], we actively cast shadows on the object as a cue
to establish semi-dense stereo correspondences. There are four
major steps involved: shadow curve extraction, intersection of
curves and epipolar lines, field surface interpolation (FSI), and
3D reconstruction.

First, a series of images containing shadows is obtained.
The shadow boundaries are extracted and used as shadow

Fig. 1. Outline of the proposed method with four major steps.

curve correspondences between the two corresponding images.
Then, epipolar lines are calculated and used to intersect
with the shadow curves to efficiently generate precise point
correspondences along the curve pair from two images. The
accuracy of point correspondences is further improved to sub-
pixel accuracy by proper interpolation. Finally, we develop a
novel FSI approach to estimate the points that are between
two shadow curves by exploiting both the spatial and stereo
calibration information to generate dense correspondences
between two images, which are used to recover the organ
surfaces. The overall scheme of our approach is illustrated
in Fig. 1.

B. Shadow Curves Extraction
Since the accuracy of shadow extraction directly affects the

accuracy of the recovered surface, it is important to extract
the shadow borders in both images as precisely as possible.
Our shadow extraction method is based on two assumptions.
Firstly, the scene is stationary during the shadow casting
process. The static scene is also required in [15], which
processes shadows on the temporal domain. Secondly, in order
for the surfaces to clearly display the shadow boundaries, we
assume the surfaces are locally smooth. It should be noted that
this is a relatively weak assumption and most tissue surfaces
are locally smooth. In fact, locally smooth surface is also
necessary for structured light based 3D reconstruction methods
to project clear patterns. Besides these assumptions, it is worth
noting that our method can not extract shadow boundaries from
self-shadowed areas, because the intensity changes are very
small in those areas. This is an inherent limitation of methods
using shadow for 3D reconstruction, such as [15].

Even though the temporal shadow edge has been used to
estimate the shadow time for each pixel and has been shown
to be very accurate [15], some of its limitations prevent it from
being used as it is. For example, that method has difficulty
in the self-shadow area. Also, it assumes that the shadow
moves forward only, specifically from left to right. This is
an unreasonable requirement, because human hands may, at
times, be shaky, which makes the shadow move back and forth
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a) b)

Fig. 2. a) Example of a difference image. b) Shadow mask image with
shadow area shown as white. The image is taken on an intestine phantom,
whose surface is uneven and its anatomical struture is better displayed in Fig.
5 and 10b.

and causes the algorithm to become unstable. Our method is
designed to overcome these problems.

In [16], Agrawal introduced a way to detect depth edges
and shadow edges with multi-flash light sources. It has been
shown that the method is effective for handling self-shadows.
In this paper, a sequence of images with a moving shadow
rather than a fixed shadow is used. Similar to [16], a shadow-
free image is generated by taking the maximum of intensity
value at every pixel from the sequence of images, which is
called the reference image Iref . A difference image is defined
as:

Idiff = Iref − I, (1)

where Idiff reflects the intensity changes of the pixels with
and without shadows, which is exactly the main property
of the shadow area. One example of a difference image is
shown in Fig. 2(a). Based on the difference image, adaptive
thresholds are set for different rows to discriminate shadow
areas from one another. Similar to [15], we calculate maximum
and minimum intensity for pixels along each row in each
image, and the mean value is used as the threshold for each
row. The shadow mask is defined in the following equation:

Imask = Idiff > threshold. (2)

The above method naturally marks the shadow area white and
the other area black, as shown in Fig. 2(b), as the intensity
change of the shadowed area is much larger than the other
areas. Due to the existence of noise in the camera sensors and
changes of reflectance, there could be isolated sparse white
dots distributed within the dark region, which can be easily
filtered out with a median filter.

In practice, only one shadow scan is enough for 3D re-
construction and the shadow is scanned along one direction.
We observe that during the shadow scan, the shadowed area
increases gradually and stably on the locally smooth surfaces.
Therefore, we propose to accumulate the shadow area and
extract the rightmost border as the shadow curve. The binary
accumulated shadow image is initialized as a black image.
Its formal definition is given iteratively as in the following
equation, where the operation is pixel-wise.

Iacc = Max(Iacc, Imask). (3)

a) b)

Fig. 3. a) One example of an accumulated shadow mask image; b) Image with
detected shadow border overlaid. Resolution of the raw image is 640*480. The
camera-to-target distance is from 11cm to 15cm. More details are available
in “Experiments and Results” section.
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Fig. 4. Shadow curves before and after LWR. Blue dotted line represents
the original shadow curve. Red solid line represents the curve after LWR.

It is worth noting that only the newly-generated shadow
areas are processed and the backward shadows will be ignored.
This makes shadow extraction more robust and solves the
potential shaky hand problem. One example of an accumulated
shadow mask image is shown in Fig. 3.

Intuitively, the shadow curve is defined along the vertical
direction as the rightmost border of the accumulated region.
For each row, the rightmost column of shadow is recorded.
Due to the camera speed, resolution and the tool motion,
the shadow boundaries in the image might be blurry. For
the blurry shadow boundary, the shadow curve is not unique
and depends on the threshold value. The shadow curve after
thresholding is typically zigzagging due to the discretization
nature of image. In addition, the curve is highly sensitive to
the image noise, which makes the shadow curve in the left
image do not correspond to the curve in the right. Because the
surface is assumed to be locally smooth, the shadow curve is
expected to be locally smooth. We apply LWR to smooth the
zigzagging curve locally, which makes the left and right curves
more consistent and robust towards the image noise. Since the
curve might contain multiple segments, the locality is extended
to 2D image space so that each segment can be smoothed
separately. After LWR, the coordinates of curve pixels reach
sub-pixel accuracy. A shadow border before and after LWR is
shown in Fig. 4.
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a) b)

Fig. 5. Illustration of intersection of shadow curve and epipolar lines. a)
Left image. b) Intersection of shadow curve and epipolar lines on right image.
The shadow is casted vertically on the image so that its intersection with the
horizontal epipolar lines is unique.

C. Shadow Curves Intersection
After the shadow curves are obtained, for points along a

curve in one image, we find their corresponding points in
the other image by using the intersection between the shadow
curves and epipolar lines. When the images are not rectified,
the epipolar lines can be calculated using fundamental matrix
from the calibration results. When the images are rectified,
the epipolar lines are just the image rows. For each point in
the left image, different from the traditional stereo matching
method that searches along the epipolar line in the right image,
our approach directly calculates the intersections between the
shadow curves and epipolar lines, as proposed in [17]. Since
the corresponding point in the right image should lie on both
the shadow curve and the epipolar line, their intersection
point is exactly the corresponding point. This is illustrated
in Fig. 5. To simplify the problem, we arrange the two
cameras perpendicular to the tool so that the epipolar lines are
perpendicular to most of the casted shadows and there will be
a unique one intersection. However, there are extreme and rare
cases, in which there might be more than one intersection from
zigzags by discretization. For those cases, we use the order of
the intersections on the epipolar line to define the matching.
On the other hand, the shadow curves in the self-shadow
areas are marked as invalid and there will be no intersections,
which is the reason why no corresponding points can be found
in the self-shadow areas. For computation efficiency, even
considering the overhead of the shadow boundary extraction,
direct calculation of the intersection point should be much
more efficient than stereo matching, which simply requires an
extra 1D search for each pixel pair.

D. Field Surface Interpolation
The 3D coordinates of the pixels on the shadow curves can

be directly calculated by the traditional triangulation method
[18] or from the disparity values. Those shadow curves divide
the image into small regions. For pixels inside of those regions,
their 3D coordinates can be interpolated by nearby pixels
whose depths have been calculated. The interpolation method
used here should exploit two constraints: spatial constraint

Fig. 6. Mapping defined by a pair of curves and epipolar lines.

and stereo constraint. The spatial constraint is based on the
fact that the pixel is between two shadow curves. The stereo
constraint comes from the stereo calibration. Bouget [15]
proposed to estimate the shadow time for each pixel, which
could not take into consideration of stereo information. In
the surface reconstruction community, an interpolation in 3D
space is always used, such as Delaunay triangulation, does
not consider the stereo information. Here, we propose a novel
FSI method, which incorporates both spatial information and
stereo calibration information.

First, consider only a single pair of curves on two images. It
is known that a pair of lines, one from each image, can define
a mapping between the coordinates of the two images [19].
The difference of a curve and a line here is that each point on
a line has the same normal, while different points on a curve
may have different normal directions that might intersect with
one another, which makes the mapping between two images
not bijective. To avoid the intersection of normals, epipolar
lines provide a natural alternative, which are guaranteed to
have no intersection. Specifically, each point on the curve is
attached to a direction that is along the corresponding epipolar
line. Now, each pixel on the curve has two coordinates: one is
along the epipolar line and the other is along the curve itself.
The mapping is illustrated in Fig. 6.

Curve AB in the first image corresponds to curve A′B′ in
the second image. For each point X in the first image, its
epipolar line intersects with curve AB at M . The correspond-
ing epipolar line in the second image intersects with curve
A′B′ at M ′. For X , its coordinate along MX is defined as
v, which is calculated as follows:

v =
|MX |

|ÂB|
, (4)

where |ÂB| represents the arc length of curve AB. In the
second image, the same v is used as the coordinate along
M ′X ′ to find X ′. That is,

|M ′X ′| = v ∗ |Â′B′|. (5)

After the above steps, for each point in the first image, a unique
point in the second image is found. Also, each point in the
second image corresponds to a unique one in the first image.
This gives a bijective mapping.

The mapping defined above is only for the special case with
one pair of curves. In practice, a large number of pairs of
shadow curves are available. For general case, those curves
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Fig. 7. Mapping defined by two pairs of curves and epipolar lines. The
above figure shows the case with intersecting curves.

might intersect with each other and divide the image into
small regions. Instead of taking a global mapping, a local
mapping is defined for each region. Even though a region
might be surrounded by multiple curves, for simplicity only the
mapping for the region surrounded by two curves is explained,
as illustrated in Fig. 7. For the region surrounded by curve AB
and curve CD in the first image, each point X lies on one
epipolar line that intersects with curve AB at M , curve CD
at N . The coordinate of X along segment MN is defined as:

v = |MX |/|MN |. (6)

As in the single pair case, the corresponding point X ′ is
defined as the point on M ′N ′, which has coordinate v:

|M ′X ′| = v ∗ |M ′N ′|. (7)

It is worth noting that the mapping for all pixels we defined
here is consistent with the mapping for pixels on curve
boundaries.

E. 3D Reconstruction
The derived mapping gives dense correspondences between

the two images. The proposed method establishes dense cor-
respondences and depends only on the information of the
shadow curves and the epipolar lines. This means that no
texture on the object surface is used. The 3D reconstruction
can be performed with or without image rectification. Most
stereo reconstruction methods perform rectification before
stereo matching, which simplifies the 2D correspondence
matching into a 1D search task. After rectification, the 3D
reconstruction is equivalent as building the disparity map
and disparity values have been chosen as the standard for
the comparison of different stereo matching algorithms [7].
Following the same framework for the comparison purpose,
we also perform rectification and build disparity map. For
accuracy and efficiency, we adopt the rectification from [20].
It is worth noting that our method is not limited to rectified
images.

III. EXPERIMENTS AND RESULTS

To take advantage of our approach, it is necessary to have
stereo cameras and a separated light source. In a regular MIS,
a stereoscope can be used along with a light source through a
separate port for the generation of natural shadows, as in [12],

a) b)

Fig. 8. a) Experiment setup with a stereo camera, a single-point light source
and a surgical tool. b) Illustration of how the shadow is casted by waving the
tool in front of the light.

[21]. It is also possible to use a new shadow telescope [21]
with light delivered through a separate illumination cannula.
This approach naturally fits with our novel wireless camera
setup, as introduced in [22].

The experiment setup for this paper is illustrated in Fig.
8, which contains a rigid shell with an insufflated abdomen
(Chamberlain Group, MA, USA). The cameras we used
are micro wireless CCTV cameras (10mm diameter), with
640×480 resolution and 30 fps speed. The cameras were syn-
chronized by a SENSORAY frame grabber. The light source
was built from a Cree XLamp XM-L LED with a footprint
of 5mm × 5mm. This single LED can deliver up to 1000
lumens. The abdomen has size of about 39cm×34cm×21cm
(length × width × height). The camera-to-target distance
ranges from 11cm to 15cm. Each camera’s field of view covers
area of size about 10cm×9cm and their overlap field of view
has size of about 7cm×9cm. The distance between the stereo
camera and the single-point light source is about 6cm. The
surgical tool has diameter of 5mm and length of 34cm. To cast
the shadow, the surgical tool is inserted in the abdomen and
horizontally rotated in front of the light. The perpendicular
distance of the tool to the light source is about 7cm and
8cm to the cameras. During the shadow casting process, the
distance of the tip of the tool to the object is within 4cm-7cm.
With only about 30 degrees of surgical-tool waving, the casted
shadow is able to cover both cameras’ fields of view. Since the
waving movement is small, the motion can be achieved in most
abdominal MIS surgeries. The video of the shadow casting
process and the videos captured by stereo cameras are all
available online (http://rpal.cse.usf.edu/project1/index.html).

To better illustrate the setup we used, a diagram is presented
in Fig. 9. As shown in the figure, a stereo rig and a single-point
light source were both mounted using needles [22], [23] on
the abdominal wall. However, our setup is flexible, especially
the placements of the light and cameras. This flexibility allows
the light and cameras to be mounted at different positions for
different surgeries.

A. Phantom and ex vivo Images
To validate the proposed method, we used the above setup to

capture images and tested the algorithm on four phantoms with
different types of material: a flat textured paper, an intestine,
a lung, and a heart. The flat textured paper was placed on
a flat board. The intestine and lung are plastic and the heart
is made of silicon. To be clear, the heart phantom was used
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Fig. 9. Illustration of the experiment setup.

a) b) c)

d) e) f)

Fig. 10. a) Flat plane. b) Plastic intestine model. c) Plastic lung model. d)
Silicon heart model. e) Left image of porcine liver. f) Right image of porcine
liver.

only as an example for its life-like surface. We do not claim
that our current approach can be used in cardiac surgery since
the real heart has fast and complex motion [6]. Examples of
the original images are shown in Fig. 10. It can be seen
from the images that they all have the specular reflection
problem. Because specular reflection is perspective-dependent,
the specular reflection areas of the two cameras are different,
which means correspondences based on the specular reflection
texture will not be correct. Meanwhile, the texture on the
images tends to be uniform and not distinctive enough, which
makes it difficult to establish correspondences.

To show the performance of our method on ex vivo images,
we tested the algorithm on images taken from a porcine
liver. Because the porcine liver was wet, specular reflection
and inter-reflection became more severe and caused a larger
error in shadow extraction. The numerical results of both the
phantoms and ex vivo images are available in Section IIID.

B. Disparity Maps
To illustrate the benefits of using shadow information for

3D reconstruction for MIS, we have compared our approach
with traditional stereo algorithms, in which stereo cameras
were calibrated and images are rectified [24]. The rectification
we adopted in this paper is from [20] due to its accuracy
and efficiency. After rectification, the focal length of the two
cameras was 798.40 and the baseline was 11.16mm. The valid
disparity range for our setup is [60 130], which is used in
stereo matching algorithms as a priori. The proposed method
is compared with three popular stereo matching algorithms.
The first one is considered to be the state-of-the-art stereo
matching algorithm applied in MIS [1], which is referred as

a) b) c) d) e)

Fig. 11. a) Rectified left image with shadow and detected border. b) Disparity
maps derived by our proposed method. c) Disparity maps by SP [1]. d)
Disparity maps by BP [25]. e) Disparity maps by RT [26].

seed propagation (SP). The second one is referred as believe
propagation (BP) [25]. Following the notation in [1], the last
one is abbreviated as RT [26].

The disparity maps obtained by different algorithms are
shown in Fig. 11. The first column (Fig. 11a) shows the
rectified left images with a cast shadow. The second column
(Fig. 11b) illustrates the results from our proposed approach.
The rest of the figure gives the results from SP (Fig. 11c),
BP (Fig. 11d), and RT(Fig. 11e) stereo matching algorithms.
Those disparity images are all color coded, by which white
(255 intensity value) correspondes to the maximum disparity
value (130). Since the proposed method relies on shadow
information rather than texture, to make a relatively fair
comparison, the shadow is kept during the stereo matching
procedure. In all the experiments, even though the surfaces
do contain texture, the texture is not discriminative enough
to establish correspondences. As shown in Fig. 11, all three
stereo matching algorithms have difficulty in propagating the
correspondences. This is most likely because the low texture
surface gives only very sparse feature correspondences, which
are not enough to propagate a dense and accurate disparity
map. Overall, it is clear that with the addition of shadows,
the proposed method significantly outperforms the other three
stereo algorithms.

C. 3D Reconstruction Results
The above disparity maps are further processed to get 3D

reconstruction results. For the proposed method, the recov-
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ered 3D surfaces with and without texture are given in Fig.
12. Those surfaces are displayed using MeshLab, and the
snapshots are shown in the figure. Those images in Fig. 12
show that the proposed method is able to recover the 3D
surface to a certain degree. For example, in the intestine
surface, the deep slopes are nicely recovered. However, it
should be noted that errors do occur. For instance, in both
the plane and heart examples, the specular reflections cause
holes. In the ex vivo experiments, the markers themselves have
a certain size, thus making the shadow extraction inaccurate
when the shadow goes across the markers. In addition, stripes
can also be observed in Fig. 12 and they can be reduced
if more shadow images are processed. As comparison, 3D
reconstruction results of other three methods are also provided
in Fig. 13. We recommend to zoom in the figure to have a
better understanding of the reconstruction results. Comparing
Fig. 12 with Fig. 13, it is clear that the proposed method has
great advantage in both accuracy and coverage.

D. Numerical Comparison
To get the ground truth point correspondences for quan-

titative error analysis, markers are put on the surface and
later selected manually from the images, as shown in Fig.
10. Those marker points, (Pl, Pr), selected from left and right
images, serve as ground truth point correspondences. For each
point Pl in the left image, P ′

r is the calculated corresponding
point in the right image. One example of Pr and P ′

r in the
right image is shown in Fig. 14. The 2D Euclidean distance
between Pr and P ′

r is named as disparity error and used to
reflect the accuracy of disparity maps. In addition, the 3D
positions of (Pl, Pr) and (Pl, P

′

r) are also computed using
triangulation, and the distance between them, named as 3D
position error, serves as a measure for the accuracy of the
recovered surface, even though the calibration error is inherited
in the calculation of the 3D positions. Both disparity error and
3D position error are calculated to compare among the four
different methods. Since the disparity maps are sparse and
some markers might have no values, for a fair comparison,
the nearest valid disparity values (within range [60 130]) are
chosen to represent those markers.

The disparity error results of the four methods over the
five experiments are given in Table I. The 3D position error
comparison results are displayed in Table II. First of all,
compare BP with SP and RT, it appears that BP has very low
disparity error and 3D position error. In fact, based on our
observation, this is most likely because BP method explicitly
detects and matches some markers on the image. Both SP
and RT do not show such obvious operations. However, even
stereo matching methods might get better results because
of markers, as show in those tables, the proposed method
still significantly outperforms the others. For instance, in the
phantom experiments, the disparity errors of the proposed
method are within 1.04 pixel, and the 3D position errors of the
proposed method are within 0.7mm. In addition, it is worth
to note that in ex vivo experiments, both the disparity error
and 3D position error are larger than the phantom ones in
all four methods. This is probably caused by the wet surface

Fig. 12. 3D reconstruction results of flat plane, intestine phantom, lung
phantom, heart phantom and porcine liver. The left column shows the
recovered 3D model without texture mapping. The right column shows 3D
model with texture mapping.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. *, NO. *,* * 8

a) b) c)

Fig. 13. 3D reconstruction results over five experiments of a) SP method, b)
BP method and c) RT method. The first row is experiment on a plane. The
second row corresponds to experiment on an intestine phantom. The others
are lung, heart and liver respectively.

Fig. 14. Illustration of predicted points in right image with ground truth.
Red crosses are ground truth points and white crosses denote the calculated
points from the disparity map.

TABLE I
DISPARITY ERROR OF THE FOUR METHODS OVER THE FIVE EXPERIMENTS.

ALL THE NUMBER IS IN PIXEL.

Experiments Proposed
method SP BP RT

Plane 0.5387 1.0796 4.0737 31.3568
Intestine 0.5321 1.7709 7.9680 15.1386
Lung 0.9546 2.2666 3.0994 20.2294
Heart 1.0332 9.8639 6.0335 22.3429
Porcine liver 1.3675 28.5919 4.5216 15.4770

TABLE II
3D POSITION ERROR OF THE FOUR METHODS OVER THE FIVE

EXPERIMENTS. ALL THE NUMBER IS IN MM.

Experiments Proposed
method SP BP RT

Plane 0.3823 1.7286 5.1175 37.7707
Intestine 0.5923 2.7590 10.7844 24.1257
Lung 0.6553 2.2382 2.5720 27.8008
Heart 0.5834 7.8710 4.4799 21.5661
Porcine liver 1.1406 22.1534 4.2925 11.6948

of the porcine liver, which causes more specular reflections.
However, even with the higher complexity in ex vivo images,
the 3D position error of our method is still within 1.2mm. On
the other hand, in each disparity map, the percentage of pixels
whose values are in the range [60 130] is recorded in Table III.
The numerical comparison of those three tables concludes that
our method performs significantly better than the other three
both in accuracy and coverage. Next to our method is the SP
method, which is followed by BP method. RT method ranks
last, probably because it sacrifices the accuracy to achieve real
time performance.

E. Robustness Analysis
Since the input of the proposed method comes from shadow

curves and calibrated stereo cameras, the accuracy of the final
disparity results depends on the precision of shadow extraction
and stereo calibration. There are a couple of contributing
factors to the shadow border extraction error. The first one
is the intensity contrast, that is, a dark shadow and a light
background can give better extraction results. Second, the
sharpness of the shadow edge directly affects the accuracy of
the shadow border. In addition, the synchronization between
the two cameras is also an important issue, because only
properly-synchronized cameras can guarantee that the left
and right shadows correspond to each other. Finally, strong
specular reflection can lighten the shadowed area and may
disturb the shadow extraction. On the other hand, inaccurate
stereo calibration causes error in epipolar lines estimation.
Because epipolar lines are used to intersect with the shadow
border and establish the point correspondences, the error of

TABLE III
THE PERCENTAGE OF PIXELS IN IMAGE WITH VALID DISPARITY VALUE.

Experiments Proposed
method SP BP RT

Plane 53.87% 30.06% 61.67% 23.34%
Intestine 51.97% 34.00% 60.58% 32.16%
Lung 55.16% 32.58% 65.09% 45.50%
Heart 46.25% 25.25% 53.70% 33.35%
Porcine liver 55.80% 09.74% 46.66% 40.90%
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Fig. 15. 3D position error v.s. shadow extraction error.
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Fig. 16. 3D position error v.s. epipolar line error.

stereo calibration will introduce the horizontal error in point
correspondences.

Following the same notation in previous section, we denote
(dx, dy) = P ′

r − Pr. For the proposed method, dx is mainly
caused by the shadow extraction error and dy is the result
of the epipolar line calculation error. To analyze how robust
the final results are towards the accuracy of shadow border
extraction and epipolar lines, uniform pixel noises in different
ranges are added to the calculated marker coordinates in the
right image, and the corresponding shadow extraction error
and 3D position error are recorded. Uniform pixel noises in the
range of [−3 3] are added for shadow border extraction, and
uniform noises in the range of [−10 10] are added for epipolar
line computation. In Fig. 15, the 3D position error as a function
of the shadow extraction error is displayed, revealing that 3D
reconstruction accuracy is linearly proportional to the accuracy
of the shadow extraction. This means that the proposed method
is robust without significant error propagation towards the
accuracy of shadow border extraction. In Fig. 16, it shows
that even when the epipolar line error is as large as 10 pixels,
the 3D position error is still within 1.5mm. The comparison
of Fig. 15 and Fig. 16 empirically indicates that the 3D
reconstruction is more sensitive towards the accuracy of the
shadow border extraction than the accuracy of epipolar lines.

IV. CONCLUSION

In this paper, we have proposed to use weakly structured
light to recover internal organ surfaces for MIS. Typically,

in MIS, the texture of the captured images is not distinctive
enough, which makes it difficult to apply the traditional
texture-based stereo reconstruction. Instead of relying on tex-
ture information, this paper explores the information from
shadows generated from surgical tools. The system require-
ments to use the proposed method are stereo cameras and a
separated single-point light source. After shadows are detected
in the images, the shadow borders are extracted from both left
and right images as shadow curve correspondences. They are
later used to intersect with epipolar lines to generate accurate
point correspondences for surface reconstruction.

In addition, a novel FSI interpolation is introduced to
establish dense correspondences, on which a disparity map
is created and 3D surfaces are recovered. The performance
of the approach has been validated by phantoms and ex vivo
images. Disparity maps derived from the proposed method
are compared with three popular stereo matching algorithms
and demonstrate that the proposed method significantly out-
performs the others. Numerical analysis indicates that the
accuracy of recovered 3D surface can be up to 0.7mm for
phantom models and 1.2mm for ex vivo images. Currently,
the major holdback from the real time implementation of our
method is the shadow generation process, since it takes about
3 seconds to scan through the whole region of interest. In the
future, we plan to develop a progressive updating approach that
will update the 3D surface model at the areas where dynamic
shadows are cast by working with surgical tools during MIS
procedures. We are currently collaborating with surgeons for
the implementation of our developed systems in MIS and plan
to evaluate those systems with in vivo experiments in the future
work.
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