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Abstract

This paper presents a method of imaging the coloration
pattern in the fingernail and surrounding skin to infer fin-
gertip force direction during planar contact. Nail images
from 7 subjects were registered to reference images with
RANSAC and then warped to an atlas with elastic regis-
tration. Recognition of fingertip force direction, based on
Linear Discriminant Analysis, shows that there are common
color pattern features in the fingernail and surrounding skin
for different subjects. Based on the common features, the
overall recognition accuracy is 92%.

1. Introduction

Due to the interaction between the fingernail, bone, and
tissue, the pools of blood under the fingernail are affected by
the pressure at the fingerpad during contact with a surface.
The blood pools create color patterns in the nail that provide
a transduction of fingerpad shear and normal force [7, 8].
Mascaro and Asada [7] have proposed a photoplethysmo-
graph sensor, comprised of an array of 6 LEDs to illuminate
the fingernail and an array of 8 photodetectors to measure
the coloration. The extremely sparse sample of the color
patterns in the nail has limited the sensor to a low measure-
ment (2 − 3N(newton)) range and accuracy (0.5 − 1N
error).

To best locate the 8 photodetectors in the photoplethys-
mograph sensor, images of the 6 different fingertip force
states for 16 human subjects have been studied in [7, 8].
At the point of contact, the force vector F = [Fx Fy Fz]
is defined such that Fz is the normal force, Fx is the lat-
eral shear force, and Fy is the longitudinal shear force (pos-
itive direction forward). The six force states were: zero
force = [0 0 0]N , normal force = [0 0 − 3], left shear
= [−2 0 − 3], right sheer = [+2 0 − 3], backward sheer
= [0 −2 −3], and forward sheer = [0 2 −3]. (To produce a
shear force without slipping, subjects were asked to produce

3N of normal force.) By manually thresholding the images,
normal force, negative and positive lateral shear force, and
negative and positive longitudinal shear force, all result in
visibly different patterns of coloration.

With a high resolution video camera to image the full
back of the fingertip, our privous work [11, 12] have stud-
ied the color response in the fingernail and surrounding skin
pixel by pixel. A detailed analysis of the static and dynamic
color response of each pixel (0.04-by-0.04 mm area) in the
fingernail was carried out for all regions of the fingernail
and surrounding skin. We found that pixels in different re-
gions of the fingernail and surrounding skin respond to the
force differently [11]. Some areas respond well to all com-
ponents of force, other areas are unique to a force compo-
nent. The observed best regions were consistent with the
observation in [7, 8].

A full study of the color pattern responding to the finger-
tip force is not only important for better design of fingernail
force sensors, but also important to understand the sensing
mechanism, including the mechanics of the fingernail-bone-
tissue interaction and its effect on blood perfusion. The
mechanism behind the hemodynamic response to normal
force has been quantitatively modeled in [7], but the re-
sponse to shear force requires further study.

Because of potential use in human-computer-interaction,
researchers have tried to prove that different directional
forces result in measurably different blood perfusion pat-
terns that are common to all people. It has been showed in
[9] that after cropping and normalization according to the
length and width of the fingernail, by pixel by pixel correla-
tion, all of the images (one image per force state per person
was taken) from one force state correlated best to the aver-
age image of the true force state with better than 99% con-
fidence, with the exception of normal force and backward
shear force which had similar patterns of coloration. They
concluded that the fingernail coloring patterns under vari-
ous force conditions were statistically different for all peo-
ple for 5 discrete forces (zero force, normal force, negative
and positive lateral shear force, and positive longitudinal
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shear force). These results provided a necessary condition
to conclude that the fingernail color patterns corresponding
to directional forces could be automatically recognized.

To have the sufficient condition of the conclusion, this
paper devises a method based on Linear Discriminant Anal-
ysis (LDA) to extract linear features and use them to iden-
tify the color patterns in the fingernail and surrounding skin.
The force level for each direction is no longer restricted as in
[9]. Instead, subjects are instructed to apply arbitrary force
levels as they prefer. The method is verified on 7 subjects
with different levels of force.

To make a comparison between images, intrasubject and
intersubject registrations are carried out. The intrasubject
registration registers different frames of one finger to a ref-
erence frame. It includes a Harris feature detection and
RANSAC homography registration. The intersubject reg-
istration registers images of different fingers to an atlas im-
age for the convenience to obtain the common color pat-
terns for all people. Instead of simply normalizing the width
and height of the nails, we use an elastic model registration
that warps the images of the fingernail and surrounding skin
to the exact shape defined in an atlas to minimize the mis-
matching error.

2. Finger Image Registration

We assume the distal phalanx is a rigid body, which is
true when the observation is the back of the distal phalanx
and the small deformation of the side skin can be ignored.
When the distance between the finger and the camera is far
larger than the curvature of the fingernail, we can assume
that the surface of the fingernail and surrounding skin is pla-
nar.

To study the color pattern in the fingernail and surround-
ing skin in response to different fingertip force directions
requires an analysis of images taken at different times. Fin-
ger posture varies over time relative to the camera. To com-
pare the images, it is necessary to align them to avoid the
orientation and position difference. We call the registration
between images of one finger as intrafinger registration.

To study the color pattern across the population, images
of different fingers have to be comparable. Meaningful re-
gions such as the distal, middle and proximal zone of the
nail should be consistent for different fingers. We call the
registration of different fingers to an atlas finger as interfin-
ger registration.

2.1. IntraFinger Registration

Since we assume the surface of the fingernail and sur-
rounding skin is a plane, the transformation between a point
(x′, y′) in a new image and a point (x, y) in the reference
image is a homography:
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where H is a 3 × 3 matrix. To determine the 9 element
in H, it requires at least 4 correspondences in both images.
The correspondences are automatically obtained with fea-
ture detection [5], correlation, and RANSAC [3] as follows:

1. Use Harris feature point detection [5] to automatically
detect feature points in both the new image (Figure 1
(A)) and the reference image (Figure 1 (B)), as shown
in Figure 1 (C).

(A) (B) (C)
Figure 1. (A) The reference image. (B) A new image. (C) Feature
points are marked as +’s in both images. The corresponding pairs
obtained with correlation are connected with lines.

2. Pair the detected feature points in two images by look-
ing for points that are maximally correlated with each
other within windows surrounding each point. Only
points that correlate most strongly with each other are
paired. Figure 1 (C) shows the pairing by connecting
the corresponding points with lines.

3. Robustly fit a 2D homography mapping model with
RANSAC to select inliers as shown in Figure 2 (A).
The inliers are the correspondences.

(A) (B) (C)
Figure 2. (A) The correspondences after RANSAC. (B) The in-
trafinger registration result. (C) Registration result (red) overlaps
the reference image for comparison (green).

With the correspondences in the new image and the ref-
erence image, the 2D homography can be calculated with
least squares. With the homography matrix, the new image
is then mapped to the reference image. Figure 2(B) shows
the transformation result. Figure 2(C) shows the overlap of
the transformation result and the reference image. We can
see that they match well. With the same process, each new
image of a finger is mapped to the reference image.



2.2. InterFinger Registration

For the convenience of analysis, a regular shape atlas fin-
ger image is built as shown in Figure 3(F). The fingernail is
modeled as a disk. The surrounding skin region is com-
posed with a ring and an isosceles trapezoid. The exact size
of each portion is illustrated.

To register the fingnail and surrounding skin, the finger-
nail in the reference images need to be segmented from the
surrounding skin. We use a Canny edge filter to automat-
ically detect the boundary of the fingernail. However, be-
cause of the broken skin around the fingernail, the automat-
ically detected boundary is noisy. It rarely forms a smooth
curve. The edge detection result of a typical finger (Figure
3(A)) is shown in Figure 3(B). We use cubic B-splines to fit
the edges and achieve a close-loop contour as shown in Fig-
ure 3(C). The region inside of the contour is the segmented
nail as shown in Figure 3(E).

(A) (B) (C)

(D) (E) (F)
Figure 3. (A) The finger image. (B) Canny edge detection result.
(C) Cubic B-spline fits the edges. (D) The contour of the fingernail
is shown as a white closed-loop. (E) The region within the bound-
ary is the fingernail. (F) The atlas of the full back of the fingertip.
The fingernail is modeled as a disk with 70 pixels radius. The sur-
rounding skin region is composed as a ring (70 pixels inner radius
and 80 pixels outer radius), and an isosceles trapezoid (160 pixels
and 200 pixels for two bases respectively).

The nail and the surrounding skin can be transformed to
the atlas image respectively with boundary-based elastic de-
formation transformation [2, 10]. We model both the finger-
nail and surrounding skin regions as elastic sheets that are
warped by an external force field applied to the boundaries.
Since elastic warping tends to preserve color pattern shapes
and the relative position of the patterns, it is well-suited for
color pattern comparison across subjects.

We assume both the fingernail boundary and surround-
ing skin boundary can be homothetically transformed to the
defined boundary in the atlas image. The boundaries in an

image are first deformed into their corresponding bound-
aries in the atlas. The mapping of the rest of the images is
calculated by solving the equations describing the deforma-
tion of an elastic sheet with the boundary deformations. De-
tailed description can be found in [2, 10] with different elas-
tic models. With the elastic deformation model, the pixel to
pixel mapping can be calculated.

The interfinger registration process is illustrated in Fig-
ure 4. After the fingernail and surrounding skin are reg-
istered respectively (Figure 4 (1) and (2)), the registration
results are combined together to generate the registration of
the whole finger image (Figure 4 (3)).

(1)

(2)

(3)
(A) (B) (C)

Figure 4. Column (A) (1) - (3) are segmented fingernail, surround-
ing skin, and the whole finger image. Column (B) (1) - (3) are
atlases of fingernail, surrounding skin, and the whole finger. Col-
umn (C) (1) - (3) are interfinger registration results for fingernail,
surrounding skin and two combined together.

The interfinger registration results for all the other 6 sub-
jects are shown in Figure 5. The registration results preserve
color pattern shapes and the relative position of the patterns.

3. Setup

With a 1024-by-768 color video camera (Flea camera
from Point Grey Research), we collected 10 images for each
of the 6 force directions for 7 subjects varying in age, size,
sex and race. All the auto adjustment functions of the cam-
era were turned off to make sure the internal condition of
the camera does not change over images. A lighting dome
as in [11] was used to provide a consistent uniform lighting
condition.

In contrast to [9], subjects were allowed to apply dif-
ferent levels of shear and normal force according to their
comfort. The subjects were given visual feedback about



Source Images

Registration Results
Figure 5. The elastic registration result for the other six subjects.

(A) (B)
Figure 6. (A) The force levels for each force group ( +Fx (o’s),
−Fx (�’s), +Fy (.’s), −Fy (�), Fz (�’s), and Fzero (+’s)); (B)
The force directions relative to the fingertip

the magnitudes and directions of the fingertip force com-
ponents using a graphical display as in [11], so that they
could hold their chosen force levels. For directional shear
forces, the subjects needed to exert some normal force to
prevent sliding. For zero force, the subjects were asked to
rest their fingers on the force sensor to yield a small normal
force. An example for one subject is shown in Figure 6 (A).
Subjects were asked to remove their fingers from the force
sensor between recordings.

One zero-force image of each subject is selected to be the
intrafinger reference image. All the other nail images for
each subjects are registered to the reference images with in-
trafinger registration in section 2.1. All the intra-registered
images of other subjects are registered to the atlas with in-
terfinger registration in section 2.2.

4. Color Pattern Identification with LDA
Method

As discovered in [9, 11], with different directions of
force applied on the fingertip, the color patterns in the fin-
gernail and surrounding skin are different. The different
color patterns can be used to classify the finger images to 6
classes corresponding to 6 force directions. Since the color
patterns in the images are very high dimensional, we need
a feature extraction method to find the features to best de-
scribe the color patterns. Considering that the application of
this technique requires real-time, a linear feature extraction
is preferred [6]. Moreover, because we are seeking com-
mon color pattern features for all people, the extracted fea-
ture should not only maximize the differences between the
6 classes, but also minimize the variation between subjects.
The well-known linear discriminant analysis (LDA) [4, 1]
is a good match.

The feature extraction problem is the same as to find pro-
jection vectors that maximize the ratio of the between-class
scatter matrix SB to the within-class scatter matrix SW :

J(W) =
|WT SBW|
|WTSW W| (1)

It is the same as

J′(W) =
|WTSBW|
|WT STW| (2)

where ST = SW + SB is the scatter matrix of the whole
data. Finding the vectors to maximize J′(·) is a generalized
eigen-problem. The columns of an optimal W are the C−1
generalized eigenvectors of

SBwi = λiST wi, (3)

where the C is the number of classes. Here C = 6. Since
ST is always singular when the number of training data is
smaller than the dimension of the data, a principle compo-
nent analysis (PCA) is used to reduce the dimension [1].
This process is usually referred to as PCA-LDA. As studied
in [13], the performance of the PCA-LDA approach heavily
depends on the selections of principal components (PCs) in
the PCA step. We use a PCA selection scheme based on the
correlation between the PCs of ST and the PCs of SB [13].

4.1. Extraction of Linear Features

630 training images are taken for 6 force directions of 7
subjects. All images are resized to 50× 50 and labeled. All
images are registered to their reference image and then to
the atlas. With LDA, the linear feature vectors are extracted
and illustrated as in Figure 7. The pixel values of the pix-
els are the weights from feature vectors. The weights can be



positive or negative. The top row and bottom row in the Fig-
ure 7 shows the positive and negative weights respectively.

Figure 7. 5 linear discriminant features for 7 subjects. The features
are shown in 2 rows. The top row shows the positive features and
the bottom row shows the negative features.

The features in fingernail are isolated in Figure 8. The
highlights in the distal and middle of the nail atlas (column
2, 3 and 4 from left in Figure 8) are consistent with previous
observations: white zones observed in [7, 8, 9] and the best
response regions in [11]. The feature regions in the column
4 have been explained as the interaction between tissue, nail
and bone [7]. The other highlight regions are the left-distal,
left-proximal, right-distal and right-proximal portions of the
nail respectively. This is consistent with previous obser-
vations, but previously not much was done regarding this
these particular obervations. These results may also be valid
for the mechanical study of the nail-bone-tissue interaction.
Other than the nail, the surrounding skin also has useful fea-
ture regions.

Figure 8. Features in the fingernail

The feature space is 5 dimensional. Figure 9 shows the
training data in the 2 dimensional plane spanned with the
first two Fisher feature vectors. We can see that even with
just 2 feature vectors, images with +Fx, −Fx, +Fy and
+Fzero are well separable.

4.2. Classification of New Images

Recognition is made in a 5 dimensional space spanned
by the Fisher vectors. New images are projected to the
Fisher feature space and classified based on the L2 norm
distances to the centroids of the 6 training clusters.

The recognition results for 790 new images of 6 force di-
rections of 7 subjects are shown in Table 1, which contains
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Figure 9. Training images are projected in the plane spanned with
the first 2 feature vectors. Six clusters represent the lateral shear
force directions +Fx (o’s) and −Fx (�’s), the longitudinal shear
force directions +Fy (.’s) and −Fy (�), normal force Fz only
(�’s), and no force (+’s).

Index All No −Fy Force All No −Fy

1 99% 100% x 97% 96%
2 93% 97% x- 98% 98%
3 93% 96% y 98% 99%
4 94% 100% y- 69% —-
5 89% 98% z 94% 100%
6 87% 97% zero 96% 100%
7 85% 100% —- —- —-
Total 92% 98% Total 92% 98%

Table 1. The columns from the left to right are the subject index,
the accuracy in percentage for each subject with 6 force directions
in consideration, the accuracy in percentage for each subjects with-
out considering −Fy, the force directions for all subjects, and the
accuracies for all subjects categorized by force direction with and
without −Fy.

2 subtables. The left one lists the subject index, accuracy of
each subject considering all force directions, and accuracy
without considering the −Fy direction. The right one lists
the force directions, accuracy of all subjects for each direc-
tion, and accuracy of all subjects for each direction without
−Fy .

The overall accuracy of this method is 92% with −Fy

and 98% without it. For all force directions, the accuracies
for all subjects are all over 85%. Four out of seven subjects
have more than 90% accuracy. When looking into the accu-
racy for different force directions, the accuracies of all di-
rections except −Fy are equal to or more than 94%. The ac-
curacy for recognizing −Fy is relatively low. Around 80%
of the misclassified −Fy is misclassifid to Fz . Not consid-
ering −Fy , the overall accuracy goes up to 98%.



5. Conclusion

The fingernail images of different people have been suc-
cessfully registered to an atlas with elastic registration. 5
linear features of the color patterns corresponding to the di-
rectional force are extracted with LDA. The feature regions
in the atlas are consistent with common observations and
previous studies. The new discovered feature regions can
be useful in the study of fingernail-bone-tissue interaction.
The verification experiment validates that the color pattern
identification method based on the linear features is fairly
accurate and repeatable even when the force levels are not
restricted.

The low accuracy of −Fy indicates that the common
color patterns of the longitudinal shear −Fy is very close
to the common color patterns of just normal force Fz ,
since most misclassifications went to Fz . The differences
between the −Fy and Fz color patterns are not signifi-
cant enough to overcome the differences between subjects.
However it is possible that by looking at features of each
individual subjects, the differences of the color patterns be-
tween −Fy and Fz might be significant. Except for this
case, the proposed method provides a feasible and valid way
to identify the force direction on the fingerpad remotely. We
have shown for the first time that finger forces, not just fin-
ger position, can be measured with ordinary cameras. The
technique alone or combined with finger tracking technique
can provide a natural input method for human-computer in-
teraction.

This method currently is limited to recognizing 6 color
patterns due to orthogonal forces. We found that the color
pattern in the fingernail and surrounding skin changes con-
tinuously with the changes of force direction on the finger-
tip. Since our method is base on linear feature extraction,
the continuity property remains in the LDA feature space.
In the future, we will further investigate the possibility of
using the continuity property and Euclidean distances to
centroids to continuously estimate the force direction. Fur-
ther, we will investigate the possibility of integrating this
technique with the force estimation in isolation in [11] to
predict 3D force continuously.
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