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Abstract
We developed the functional object-oriented net-
work (FOON) as a graphical knowledge representa-
tion for manipulations that can be performed by do-
mestic robots. This bipartite representation focuses
on household manipulation activities; for now, our
focus is on the domain of cooking preparation ac-
tivities. A robot can use FOON for solving manipu-
lation problems through a knowledge retrieval pro-
cedure. This retrieval procedure aims to determine
the necessary steps (as a task tree) to solve a given
problem, i.e. to prepare a specific dish or food item
within a specific state, given a list of ingredients or
utensils that are available for the robot to use. In our
most recent work, we modified FOON to account
for weights that reflect the difficulty or likelihood
of a robot successfully performing the action(s) in
a universal FOON. However, certain manipulations
may be too difficult for it to perform on its own
based on its own physical limitations. To make it
easier for the robot, a human can assist to the min-
imal extent needed to perform the activity to com-
pletion by identifying those actions with low suc-
cess rates for the human to do. In our experiments,
it is shown that tasks can be executed successfully
with the aid of the assistant.

1 Introduction
In the ideal world, we want to build robots that are capa-
ble of performing all tasks for those individuals who are un-
able to complete the task themselves due to physical limita-
tions. To efficiently program robots that can perform such
tasks, a knowledge representation can be created to capture
several modalities of information for task planning, specif-
ically: 1) knowing what actions produce specific effects on
objects and 2) understanding what objects and states are
necessary for producing other objects. Previously in [1;
2], we introduced the functional object-oriented network
(FOON), which is a graphical knowledge representation for
domestic robots. Although this representation can be gen-
eralized to other domains, we specifically focus on cooking
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Figure 1: Illustration of a universal FOON combining knowledge
from 65 instructional videos. Three examples of functional units are
shown, each describing an atomic manipulation.

activities. A FOON typically combines knowledge from hu-
man demonstrations. In [1], we demonstrated how a robot
can use a FOON for performing manipulation tasks through
task tree retrieval. In [2], our objective was to investigate
how we can generalize knowledge in FOON for unseen cases
of objects, since a robot’s operation is limited by the knowl-
edge contained with a FOON. That is to say: if we do not see
a specific use of an object in demonstrations, a FOON will
not have that information, and the robot will not be able to
perform those actions as a result. To manage this limitation,
we explored two ways of expanding knowledge in FOON to
other objects similar to what is present in FOON. Similarity
of objects considers the object’s functionality and meaning.

However, prior to these works, we did not evaluate the per-
formance of FOON using real robotic systems, as to perfectly
design such a robot is an exceptionally daunting task. For
one, the variability of the environment in which robots work
is very dynamic and is likely to feature objects of different



shapes and sizes, while also varying in the position of objects.
Secondly, robot motions are not guaranteed to be 100% reli-
able and can fail occasionally. A robot’s capability to perform
human-like manipulations heavily depends on how it is made;
features such as the type of end-effector it has (e.g. what type
of gripper it uses, how many fingers it has, etc.), the number
of degrees of freedom and joints it has for its appendages, and
the freedom (or lack of) to navigate the environment in search
for the items it requires for problem solving. Through the ad-
dition of weights, we are better able to capture uncertainty of
performing such actions. Therefore, we now introduce suc-
cess rates as weights in FOON to identify a task sequence that
is best suited to the current situation. Furthermore, weights
would also be set for robots with different architectures to
reflect their ability to perform certain manipulations.

We can leverage the available resources or capabilities of
the robot by introducing collaboration with a human assis-
tant. Human-robot collaboration (HRC) is an ongoing re-
search area that focuses on robot and human interaction [3;
4; 5] to solve a common goal and has been extensively stud-
ied for areas such as social interaction [6; 7; 8], coordinated
tasks [9; 10] rehabilitation [11; 12], and care for the elderly
or disabled [13; 14]. The human acts as an assistant to the
robot, who has the knowledge needed to perform the tasks as
FOON; given a goal, the robot determines the best course of
action through task tree retrieval and works with the human
to solve the posed problem. This not only makes things eas-
ier for the human in reducing the complexity of solving the
task (when compared to doing it on his/her own – especially
if impaired), but it also improves the robot’s chances of suc-
ceeding in task tree execution.

2 Functional Object-Oriented Network
The functional object-oriented network (FOON) represents
manipulations as seen in cooking activities (with possible ex-
tension to other domains) by capturing the objects and the
activity’s motions within a graphical structure. This represen-
tation is motivated by the theory of affordance [15], wherein
it describes the underlying uses and/or effects of objects af-
forded to the robot, which are innately depicted though edges
connecting objects to actions. To suitably represent activities,
a FOON contains two types of nodes: object nodes and mo-
tion nodes. Object nodes symbolize any object that is manip-
ulated passively or actively within activities in FOON, while
motion nodes symbolize the type of manipulation that con-
nected object nodes participate in for a given action. These
motion nodes can be actions commonly performed in cooking
such as pouring, cutting, or stirring. In Figure 2 describing
the task of stirring a cup of tea using a spoon, the active ob-
ject would be a spoon object that acts upon a passive object
tea cup, which contains the ingredients tea and sugar. The
stirring manipulation is represented by a motion node of la-
bel stir. This action results in a change in the contents’ state
within the tea cup, producing tea. The composition of object
nodes in this manner create a functional unit. A functional
unit describes the change in the states of objects used in a
manipulation action before and after execution; it is impor-
tant to consider object states to identify when an action has

Figure 2: A basic functional unit with two input nodes (in green) and
three output nodes (in indigo) connected by an intermediary single
motion node (in red) describing the action of stirring tea with sugar
to sweeten it. A certain robot has a 75% chance of success in per-
forming this action as indicated by the success rate.

been completed [16]. Each functional unit contains a single
motion node describing the action. Typically, an activity is
represented by a series of functional units that are connected
through common object nodes. Input object nodes describe
the required state(s) of objects needed to perform the task,
and output object nodes describe the outcome of performing
the action on those input object nodes. Some actions do not
necessarily cause a change in all input objects’ states, and so
there may be instances where there are fewer output object
nodes than inputs.

3 Adding Weights to FOON
Up to this point, we have yet to evaluate the innate capabil-
ity of a robot in task planning with FOON. All motions were
previously considered to have equal weights in FOON, im-
plying that all motions can be executed by any robot with-
out difficulty. In other words, the assumption was that any
robot should be able to perform the manipulations as well
as any other robot or even humans. However, this does not
match reality since robots come in different shapes and sizes,
meaning that they may not all precisely perform the same ma-
nipulations equally. As much as we would like any robot to
perform any motion, it is difficult to achieve human-like dex-
terity as observed in demonstrations. For these reasons, we
introduce weights into FOON to reflect how challenging a
manipulation is to perform for a given robot. The weights
reflect the robot’s success rate of performing actions. Suc-
cess rate weights (as percentages) are assigned to each func-
tional unit’s motion node and are based not only on the ma-
nipulation type, but also on the objects contained within the
functional unit. To guarantee that a robot can perform such
motions, weights can be used as heuristics for knowledge re-
trieval; even though several robots will be equipped with the
same universal FOON (meaning they will all have knowledge
of the same sequence of actions for all activities), different
weights will be assigned to them based on: 1) physical ca-
pabilities of the robot, 2) past experiences and ability in per-
forming the action, and 3) the tools or objects that the robot
needs to manipulate. This can ultimately result in potentially
very different task trees. Hence, it is important to note that
these weights must first be defined for each type of robot.
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4 Task Tree Retrieval
Given a problem defined as a goal, a robot can perform
knowledge retrieval to obtain a subgraph that contains func-
tional units outlining the steps it needs to follow to solve it.
The searching procedure is driven by a list of items available
to the robot in its environment (i.e. the kitchen), which is used
to determine the functional units that can be executed in the
given scenario due to the availability of inputs to these units.
This algorithm is motivated by typical graph-based depth-first
search (DFS) and breadth-first search (BFS): starting from the
goal node, we search for candidate functional units in a depth-
wise manner, while for each candidate, we search among its
input nodes in a breadth-wise manner to determine whether
or not they are available in our kitchen. A subgraph that is
obtained from knowledge retrieval is referred to as a task
tree. A task tree differs from a regular subgraph, as it will
not necessarily reflect the complete procedure from a single
human demonstration. Rather, it will leverage the knowledge
obtained from multiple sources to produce a novel task se-
quence. With weights, we can derive an optimal task tree
with the highest possible overall rate of success.

5 Human-Assisted Manipulations
With a revised retrieval algorithm using weights, we can ob-
tain optimal, novel task trees from FOON. However, certain
trees must be eliminated due to the robot’s inability to ac-
complish the required manipulations described in those task
trees; even the execution of the best task tree can still result in
failure. To remedy this, we can involve a human assistant in
manipulation problems. The human assistant can identify the
number of steps out of the total number of steps (as functional
units) in a task tree that he/she is able to perform with the
robot to cooperatively solve the problem. As input to the task
tree retrieval, the assistant can indicate the number of steps
as a value M , which cannot exceed the length of the task tree
N minus 1 step (as an involvement where N is equal to M
means that the human will perform the entire task with no
robot assistance in its manipulations). If M is 0, there will
be no human involvement in achieving his/her desired goal
but at the chance of not being able to perform the entirety of
the activity’s manipulations. The output of the algorithm can
be modified to produce the best task tree based on different
values of M , as certain trees may be better to execute due
to a higher likelihood of success (assuming that the human
assistant can perform the manipulation flawlessly).

In these human-assisted steps, the success rate changes to
100% by default, unless the human assistant’s ability to per-
form the action is impaired in any way (based on the person’s
health/condition, mood, age, and other factors). Once the hu-
man identifies M , the algorithm is run to find the suitable
task tree for the given amount of participation. If the human
user does not provide a value for M , the optimal value of M
can also be determined by the robot; this is done by finding
the tree whose success rate at some value of M does not sig-
nificantly improve over the prior value M − 1. The robot
may still fail its manipulations, but it will not have to worry
about performing those that it does not have programmed in
its primitives. The M steps would then be modified to indi-

Figure 3: Our experimental setup for demonstrating the use of a
weighted FOON with the NAO robot. NAO is performing the tea-
making task. Its motor primitives are taught by demonstration.

cate that a human assistant should execute those steps when
the robot executes the task tree. In the task tree execution
phase, the robot will perform its delegated actions, and the
remaining M steps are given as instructions to the assistant
on how to perform actions on the robot’s behalf.

6 Experimental Results
In our experiments, we show that we can significantly im-
prove a robot’s performance with FOON through HRC within
the planning and execution phases. We demonstrate that a
robot can acquire the ideal task tree for execution, delegate
commands to the human assistant, and successfully obtain
the goal product for varying levels of involvement. We use
Aldebaran’s NAO robot to execute manipulations needed to
complete the tasks of making tea, mashed potatoes, and ra-
men noodles. Different variations of preparing each dish were
merged together into a single, universal FOON, which was
then provided to the algorithm to identify candidate trees for
preparing these items. Because the NAO robot itself is very
small, its physical capabilities are limited to using smaller
versions of items, and furthermore, certain manipulations are
very difficult to replicate. Under these circumstances, the
robot greatly benefits from human participation in task tree
execution. Certain parts of the tasks, such as heating contain-
ers to obtain hot water, cannot be left to the robot to perform;
for such motions, their nodes were assigned a success rate of
1% to reflect how impossible they are for the robot to do on its
own. However, for those motions executable by the robot, we
assign higher rates based on our confidence in the robot per-
forming the programmed motion primitives. The task trees
obtained through the weighted retrieval approach, along with
demonstrations of the robot performing each of these trees,
can be viewed within the supplementary material provided
here1. Without human involvement, the NAO robot attempts
to execute the task tree but ends up failing once it encounters
the motion it does not know how to perform; however, with
human involvement, the robot can finish all of the tasks and
produce the final product. In some cases, we did observe that

1Video demonstrations can be found at the following link:
http://www.foonets.com/human-robot.html
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the motion primitives of the robot can fail, rendering the en-
tire sequence as a failure. As future work, we would like to
include sensors or behaviour that allow the robot to determine
when it has failed a particular action and to determine what it
needs to do to recover from the failed action. Even without its
own notion of failure, the robot can supplement this through
human interaction by communicating with the assistant to de-
termine whether it should perform the action again.

7 Conclusion and Future Work
To summarize, we introduce human-robot collaborative
task planning using the graphical knowledge representation
known as the functional object-oriented network (FOON).
Previously, we have shown that a FOON can be used for ob-
taining the steps needed to achieve a given goal through task
tree retrieval, and that these task trees can be novel and flexi-
ble to the given scenario. We introduced a modified retrieval
procedure that takes the robot’s physical capabilities into ac-
count for task planning through the integration of robot suc-
cess rates. These success rates determine whether the robot
can successfully execute the task tree on its own or whether
it needs some assistance. To improve the performance of the
robot in execution, a human assistant can perform the difficult
motions for the robot. We discussed the modified task tree re-
trieval to acquire the ideal task tree based on the amount of
involvement that can be given by the human assistant, and in
our experiments, We show that we can obtain suitable task
trees that leverage both the robot’s and human’s capabilities
without requiring too much effort from the human assistant.
In the future, we would like to explore task tree execution
for manipulations done by multiple robots, thereby creating
a multi-robot collaborative effort to solving problems. This
would require identifying difficulties in performing various
types of manipulations so that an optimal task tree can be
produced that maximizes the performance of the participating
robots. We will demonstrate the interaction between two or
more robots, even of different types, to illustrate that FOON
can be used for task tree retrieval and execution for any given
robot and that plans can be made to synchronize efforts made
by the robots to solve the given problem. In addition, we
would like to focus more on the robot’s recovery from failure
to perform a specific action in a FOON task tree since this is
also important to successfully execute its given task.
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you?: a robot companion approaching a seated person
in a helping context. In Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interac-
tion, pages 172–179. ACM, 2006.

[15] J.J. Gibson. The theory of affordances. In R. Shaw and
J. Bransford, editors, Perceiving, Acting and Knowing.
Hillsdale, NJ: Erlbaum, 1977.

[16] A. B. Jelodar, M. S. Salekin, and Y. Sun. Identifying
object states in cooking-related images. arXiv preprint
arXiv:1805.06956, May 2018.

4


	Introduction
	Functional Object-Oriented Network
	Adding Weights to FOON
	Task Tree Retrieval
	Human-Assisted Manipulations
	Experimental Results
	Conclusion and Future Work

