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ABSTRACT

The state of an object is an important piece of knowledge in
robotics applications. States and objects are intertwined to-
gether, meaning that object information can help recognize
the state of an image and vice versa. This paper addresses
the state identification problem in cooking related images and
uses state and object predictions together to improve the clas-
sification accuracy of objects and their states from a single
image. The pipeline presented in this paper includes a CNN
with a double classification layer and the Concept-Net lan-
guage knowledge graph on top. The language knowledge cre-
ates a semantic likelihood between objects and states. The
resulting object and state confidences from the deep architec-
ture are used together with object and state relatedness esti-
mates from a language knowledge graph to produce marginal
probabilities for objects and states. The marginal probabili-
ties and confidences of objects (or states) are fused together
to improve the final object (or state) classification results. Ex-
periments on a dataset of cooking objects show that using a
language knowledge graph on top of a deep neural network
effectively enhances object and state classification.

Index Terms— State Classification, Transfer Learning,
joint object and state classification, Concept-Net.

1. INTRODUCTION

Image classification is a research area in computer vision that
has gained great attention in recent years mainly to tackle
object classification and detection problems [1, 2, 3]. Ob-
ject states, on the contrary, have not been considered as much
as object classification in recent literature. Moreover, object
states require further analysis especially for robotics-based
applications. Robotic manipulation, task planning, and grasp-
ing require knowledge and constant feedback about the state
of the environment and objects. For instance, if a robot chef
wants to perform the task of chopping an onion, it has to
grasp the whole onion, cut it into half, recognize its new state
(sliced), grasp it accordingly, and cut it into smaller parts
while continuously monitoring the state. Ultimately, the robot
needs to recognize the desired state and understand when it
has reached the end of the procedure (e.g. chopping). The
problem of states has been analyzed in several previous works

[4, 5, 6]. Similar to [6] we will address the issue of states in
cooking related images.

States of objects are not independent of the object itself,
the action happening, or the scene. Additional information
from a single image such as knowledge about the objects in
the image will lead to more accurate state classification re-
sults. Some research has focused on joint state and action
or state and object classification [2]. Language knowledge
graphs are useful for analyzing semantic relationships [7, 8].
Language knowledge graphs can draw a connection between
objects and states in an image and define the likelihood of
an object and state occurring together. Combining the image
classification power of deep convolutional networks with the
semantic power of a language knowledge can provide a pow-
erful tool for joint state and object classification.

In this paper, we present a pipeline consisting of a deep
convolutional network and a language knowledge graph infer-
ence strategy for joint state and object classification as shown
in Figure 1. The Resnet-50 architecture from [1] is trained
with two parallel classification layers for object (e.g. potato)
and state (e.g. diced) classification. Joint confidences for each
pair of object and states are computed using the relatedness
assertion in Concept-Net. The object and state marginal prob-
abilities are computed using the confidences from the deep
network and the joint confidences derived from Concept-Net.
The outputs from Resnet-50 are concatenated with the in-
ferred marginal probabilities which are then fed to two multi-
layer perceptron (MLP) networks. The MLPs are trained and
the whole pipeline is evaluated over a dataset of cooking ob-
jects. A selector gate is trained to predict whether the CNN
model will predict correctly or incorrectly given an input im-
age and is incorporated in the model for prediction improve-
ment. Our work has two main contributions:

• A new pipeline for joint state and object classification
which incorporates language knowledge to help with
state and object predictions.

• A selector gate that improves classification accuracy by
utilizing the input and output of a trained classifier.

The rest of the paper is organized as follows. Section 2 in-
troduces the related work in state classification. Section 3 in-
troduces the methodology including the language knowledge
used for state and object classification. Section 4 discusses
experiments and results and Section 5 concludes the paper.



Fig. 1. Pipeline for State and Object Classification using Language Knowledge.

2. RELATED WORK

Object classification and detection are very popular areas of
research [1, 9, 10, 11], but state classification from a single
image requires more investigation. Some work explicitly ad-
dress the states [6], and some perform state identification im-
plicitly [12]. In [2], action attributes and parts are used as
states of an action for action classification. High level image
attributes have also been incorporated in CNNs and LSTMs
to provide descriptions for an image [3]. In [6], a dataset of
states for cooking objects was introduced and the problem of
state classification in cooking related images was addressed.
We use this dataset in our work. In [13], states and state trans-
formations between objects including cooking objects are an-
alyzed on a collection of images.

In [4], states of objects and state-modifying actions are
jointly detected using a discriminative clustering cost. In [5],
a multi-task CNN is proposed for binary attribute prediction.
Each binary attribute can be considered as a state in our con-
text. In [14], a deep convolutional and recurrent framework
is presented for providing multiple object labels from a sin-
gle image. This work is similar to our work in the aspect that
it provides multiple labels for a single image. Facial expres-
sion can also be considered as a state of the face. In [15],
a multi-loss architecture is proposed to capture both identity
and expression associated features for face expression classi-
fication. In [16], a framework is proposed that simultaneously
models multiple concepts or states of position in a sequence
using an RNN and a spatio-temporal graph.

Knowledge representations have been effectively used in
combination with classification approaches. In [17], a video
understanding framework was proposed that deploys a deep
convolutional network together with a knowledge representa-
tion. Knowledge representations can also be incorporated in
robotics applications [18] and to aid robots in manipulation

decisions for cooking actions [19, 20]. Concept-Net has also
been employed for object detection. In [7], semantic con-
sistency is seeked by combining information from a knowl-
edge graph such as Concept-Net and any object detection al-
gorithm.

3. THE PIPELINE

We propose a pipeline for joint state and object identification.
The pipeline includes a convolutional neural network, a lan-
guage model and two MLP networks as shown in Figure 1.
We apply a selector gate on the pipeline outputs to improve
results as depicted in Figure 2.

3.1. Stage 1: Double Loss Convolutional Network

In the first stage of the pipeline, we use the Resnet architecture
with two outputs- one for state and one for object classifica-
tion. The two applications use the same weights apart from
the last layer. The loss applied for object and state classifi-
cation are defined separately and trained simultaneously. The
network outputs two different sets of confidences via the soft-
max layer, one for the state classes, [P (statei)i=1:Nstates

],
and another for the object classes, [P (objecti)i=1:Nobjects

], as
shown in Figure 1. The notations Nstates and Nobjects are the
number of states and objects respectively. The soft-max con-
fidences are the first set of probabilities we obtain for object
and state classification. We name them as prior probabilities
of each object (or state) occurring in the image.

3.2. Stage 2: Language Knowledge based Features

In natural language processing, documents, sentences, and
words are processed to extract meanings, relationships and
word embeddings. In this paper we will use the Concept-Net,



which is more powerful than the widely used Word2vec [8],
and the Google N-gram Viewer to quantify word relations.

Concept-Net is a language knowledge graph that includes
words and phrases as nodes and natural language relation-
ships between the nodes as edges [21]. Concept-Net defines
and implements a class of language- and source-independent
relations between words and phrases including IsA, UsedFor,
and CapableOf and also associates weights with every re-
lationship. Weights of relations are calculated based on an
aggregation of weights from various sources. We use the
weights from the RelatedTo relation (or assertion) of the Con-
ceptnet API to quantify the relationship of a specific state (e.g.
sliced) with a specific object (e.g. bread).

In natural language processing, an N-gram is a sequence
of N items (e.g. words) in a bed of various documents called
a corpus [22]. The frequency of two or multiple words hap-
pening together (N-grams), can be representative of how re-
lated they are. The Google N-gram Viewer is a Google based
search engine that shows the frequency of any N words oc-
curring consecutively in Google’s text sources [23]. We use
the frequencies extracted from the Google N-gram Viewer to
represent the relationship between states and objects.

3.2.1. Feature Extraction

The correct identification of objects is associated with the
correct identification of states and vice versa. We use the
Concept-Net and the Google N-gram Viewer to quantify the
relationship between the states and objects in the dataset. We
first define a set of words associated with each object and a set
of words associated with each state. For instance, for the ob-
ject potato we define the set {potato, potatoes} and we de-
fine {creamy, paste,mashed,mash, softened,whipped}
as the set representing the state creamy. To calculate the
joint probability of an object (e.g. potato) and a state (e.g.
creamy), every pair of object and state from the two sets
is looked up in Concept-Net or the N-gram Google Viewer
to derive a relatedness value. The maximum and the mean
values for each pair are recorded (e.g. potato-creamy). The
confidences are normalized so that the sum of all probabilities
of a state over various objects and the sum of all probabilities
of an object with different states each sum up to 1.

We calculate the marginal probabilities for each object
assuming the state prior probabilities and joint (conditional)
probabilities ([P (object/statei)i=1:Nstates

]) derived from
the language knowledge source (e.g. Concept-net or Google
N-gram Viewer). We conversely compute the marginal prob-
abilities for the states using joint (conditional) probabilities
([P (state/objecti)i=1:Nobjects

]). The relations for marginal
probabilities for each object P (object), and state, P (state),
is given in (1), and (2) respectively.

Po(objectj) =

Nstates∑
i=1

Pr(statei).Pc(objectj/statei)) (1)

Fig. 2. Pipeline Refinement.

Po(statej) =

Nobjects∑
i=1

Pr(objecti).Pc(statej/objecti) (2)

In (1), and (2), Pc is the conditional probability of an ob-
ject in respect to a state or vice versa which is derived from
the language knowledge, Pr is the output confidence from the
Resnet, and Po is the marginal probability.

3.3. Stage 3: Neural Network Predictions

The marginal and prior probabilities are concatenated to-
gether to create a feature vector of size 2×Nobjects and 2×
Nstates for objects and states respectively. The concatenated
object and state features are merged together to create a final
feature vector with size Vfinal = 2 × (Nstates + Nobjects).
The feature vector Vfinal is given as input to two separate
MLP networks for object and state classification respectively
as shown in Figure 1. A three layer MLP is selected using the
validation set as the finalized architecture of the networks.

3.4. Stage 4: Model Refinement

The pipeline converts correct predictions into incorrect pre-
dictions in some cases. To reduce these conversions, a re-
finement procedure is proposed that starts training after the
double loss CNN has finished training. The refinement model
is trained to predict the probability of an image being classi-
fied correctly by the pipeline. The refinement model contains
a Resnet-based CNN which returns two outputs (classes) for
a given input image; one output represents an image being
classified correctly and the other represents the image being
classified incorrectly. The two outputs are associated with
two confidences. The two confidences are concatenated with
the ouput probabilities from the double loss CNN from the
pipeline. Two separate neural networks are trained for cor-
rect/incorrect object (and state) probability predictions using
the concatenated feature vectors. The outputs from the MLP
are used as a selector for a gate selector block. A value of
one for the selector output, means that the initial prediction is
correct and the object (or state) confidences from the double
loss CNN are used for predictions. A value of zero for the se-
lector output, means that the the probabilities after language
knowledge incorporation should be used for predictions. The
refinement model is depicted in Figure 2.



Fig. 3. States and Objects statistics in the dataset.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

We used the state classification dataset from [6]. It consists of
images from 15 cooking objects and 11 state classes as shown
in Figure 3. For our experiments, we removed the states mixed
and other that are not associated with any specific type of ob-
ject. When training, we use data augmentation to balance the
classes and compute the accuracy as average class accuracy.
We annotate the dataset with object labels. The total number
of images in the dataset is around 9.5K. – 70% train, 15%
validation, and 15% test set. The dataset includes an online
challenge page with the best state classification results ranked
from best to worst1. We used the statistical information from
the knowledge representation in [19] to derive the most fre-
quent objects and states represented in cooking events. States
were analyzed hierarchically, and the main states associated
with the most frequent objects were derived [6].

4.2. Results

We implemented the Resnet model in Tensorflow and ini-
tialized with pre-trained weights from Imagenet. The sin-
gle classifier layer was removed and a double classifier layer
was added for states and objects. We trained the model for
15 iterations and with an initial learning rate of 0.01. Only
weights from the last block of Resnet were trained and the rest
were kept frozen. The relatedness values of objects and states
were downloaded from the Concept-Net (or Google N-gram
Viewer) Web APIs using the Python Request library and the
normalized versions of the relatedness values were recorded
as joint probabilities. The final features were then computed
and then given to MLPs as mentioned in Subsection 3.3.

We compared the pipeline with other methods and report
the results in Table 1. We compared the pipeline with the
raw initial confidences, the linear combination of the initial
confidence and the marginal probabilities from Concept-Net,
and an SVM-based version of the pipeline. The results show
that all methods containing a language knowledge outperform
the Resnet network as shown in Table 1. The neural network
based method that uses features from the Resnet output and

1http://rpal.cse.usf.edu/datasets cooking state recognition.html

the Concept-Net features outperforms all other methods. Re-
sults in Table 1 show that self-correction using the refinement
model improves the results even further.

Table 1. States and object classification accuracy on the test
set with and without using Concept-Net (Concept-Net as CN,
Google N-gram as GN).

Model States Objects
Resnet 79.4% 74.1%

(Resnet,CN) + SVM 79.7% 74.2%
(Resnet,GN) + MLP 80.1% 74.2%
(Resnet,CN) + MLP 80.4% 74.3%

(Resnet,CN) + MLP + Refinement 80.9% 75%

Figure 4 shows an instance of an incorrect result (diced
strawberry) converting to a correct result (tomato paste) when
using Concept-Net. Concept-Net can make mistakes. For ex-
ample grated butter has a high relatedness confidence in the
Concept-Net graph although in the real world it is unlikely to
see grated butter often. Therefore, it is easy to flip a correct
creamy butter to an incorrect grated butter. The refinement
model has the ability to prevent some of these cases.

Fig. 4. Objects and states CNN probabilities vs Concept-Net
(CN) probabilities. Probability of diced strawberry is lower
than tomato paste when CN is used.

5. CONCLUSION

The states of a cooking object are valuable information for a
robot chef when performing cooking events and are closely
related with the object itself. This paper presented a deep
neural network with two joint losses for object and state clas-
sification. A language knowledge graph was deployed on top
of confidences from a double loss CNN for extracting lan-
guage based confidences. A MLP-based classifier was trained
using the combination of confidences from both stages. Ex-
periments on a state classification dataset consisting of cook-
ing objects showed that using a language knowledge together
with the confidences from the deep network improved both
object and state classification performance.

http://rpal.cse.usf.edu/datasets_cooking_state_recognition.html


6. REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” CVPR, pp. 770–778,
2016.

[2] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and
L. Fei-Fei, “Human action recognition by learning bases
of action attributes and parts,” ICCV, pp. 1331–1338,
Nov 2011.

[3] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting
image captioning with attributes,” ICCV, vol. 00, pp.
4904–4912, Oct. 2018.

[4] J. B. Alayrac, J. Sivic, I. Laptev, and S. Lacoste-Julien,
“Joint discovery of object states and manipulation ac-
tions,” ICCV, 2017.

[5] A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia, “Multi-
task cnn model for attribute prediction,” IEEE Transac-
tions on Multimedia, vol. 17, pp. 1949–1959, 2015.

[6] A. B. Jelodar, M. S. Salekin, and Y. Sun, “Identifying
object states in cooking-related images,” arXiv preprint
arXiv:1805.06956, May 2018.

[7] Y. Fang, K. Kuan, J. Lin, C. Tan, and V. Chandrasekhar,
“Object detection meets knowledge graphs,” IJCAI-17,
pp. 1661–1667, 2017.

[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient estimation of word representations in vector
space,” ICLR, May 2013.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” NIPS, vol. 1, pp. 1097–1105, 2012.

[10] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
ICLR, 2015.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” CVPR,
2015.

[12] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap:
Fully convolutional localization networks for dense cap-
tioning,” CVPR, 2016.

[13] P. Isola, J. J. Lim, and E. H. Adelson, “Discovering
states and transformations in image collections,” CVPR,
2015.

[14] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and
W. Xu, “Cnn-rnn: A unified framework for multi-label
image classification,” CVPR, 2016.

[15] Z. Meng, P. Liu, J. Cai, S. Han, and Y. Tong, “Identity-
aware convolutional neural network for facial expres-
sion recognition,” FG 2017, pp. 558–565, May 2017.

[16] A. Jain, A. R. Zamir, S. Savarese, and A. Sax-
ena, “Structural-rnn: Deep learning on spatio-temporal
graphs,” CVPR, pp. 5308–5317, June 2016.

[17] A. B. Jelodar, D. Paulius, and Y. Sun, “Long activ-
ity video understanding using functional object-oriented
network,” IEEE Transactions on Multimedia, pp. 1–12,
2018.

[18] D. Paulius and Y. Sun, “A survey of knowledge repre-
sentation in service robotics,” Robotics and Autonomous
Systems, 2019.

[19] D. Paulius, Y. Huang, R. Milton, W. D. Buchanan,
J. Sam, and Y. Sun, “Functional object-oriented net-
work for manipulation learning.,” IROS, pp. 2655–2662,
2016.

[20] D. Paulius, A. B. Jelodar, and Y. Sun, “Functional
object-oriented network: Construction & expansion,”
ICRA, pp. 1–7, May 2018.

[21] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An
open multilingual graph of general knowledge,” AAAI,
2016.

[22] C. D. Manning and H. Shutze, “Foundations of statis-
tical natural language processing,” in The MIT Press,
1999.

[23] Google, “Google ngram viewer,”
http://books.google.com/ngrams/datasets, 2012.


	 Introduction
	 Related Work
	 The Pipeline
	 Stage 1: Double Loss Convolutional Network
	 Stage 2: Language Knowledge based Features
	 Feature Extraction

	 Stage 3: Neural Network Predictions
	 Stage 4: Model Refinement

	 Experiments and Results
	 Dataset
	 Results

	 Conclusion
	 References

