Generating Manipulation Trajectory Using Motion Harmonics

Yongqiang Huang and Yu Sun
Robot Perception and Action Lab (RPAL)
Computer Science and Engineering
University of South Florida
Motion Learning and Generating

• Observe human manipulation motions
 – Different types of manipulation motion trajectories

• Represent motion
 – Essence of the motion: spatial-temporal patterns
 – Flexibility to adapt

• Generate motion trajectory for new constraints
 – Robot’s kinematic and dynamic models
 – Environment constraints – obstacles
 – New start and goal
Motion Representations

- Hidden Markov model (HMM)
- Directed graph, hierarchical graph, motion graph
- Principal component analysis (PCA)
- Linear dynamical system (LDS)
- Gaussian process (GP) + Newtonian dynamics
- Movement primitive
- Functional data analysis – primarily in motion analysis
- Many others
Approach Overview

- **Demonstrate world-space trajectories**
 - Time alignment
 - Spatial adaptation
 - Trajectories converted to joint space

- **Preprocess trajectories**

- **Extract motion harmonics**
 - Functional representation
 - Eigenanalysis

- **Generate new trajectories**
 - Using motion harmonics
 - Using constraints
 - Optimization
Functional Motion Data Analysis and Representation

\[M(t) = a_0 + a_1 f_1(t) + a_2 f_2(t) + a_3 f_3(t) \]

- \(f_i(t) \) – motion harmonic
- contains a set of basis functions:
 - B-spline or Fourier
Demonstrated Motion Trajectories
Motion Clustering
Motion Trajectory Generating

\[M_{\text{robot}}(t) = a_0 + a_1 f_1(t) + a_2 f_2(t) + a_3 f_3(t) \]

\[\min_{a \in \mathbb{R}^3} \{ \alpha \text{dist}[(M_{\text{robot}}(a, t), M_{\text{demo}}(t))] + \sum_{i=1}^{m} (\text{dist}[M_{\text{robot}}(a, t), C_i]) \} \]

Subject to

\[M_{\text{robot}}(t) \in [p_{\text{min}}, p_{\text{max}}], \]
\[\dot{M}_{\text{robot}}(t) \in [v_{\text{min}}, v_{\text{max}}], \]
\[\ddot{M}_{\text{robot}}(t) \in [a_{\text{min}}, a_{\text{max}}] \]

Passing through constraints

Similarity to demonstrated trajectories
Evaluation

• We evaluate two aspects of our approach
 1. How well does the new trajectory meet the two goals of the optimization?
 • resembling the demonstrated trajectories
 • pass the via points at specified time.
 2. Can the via points guide the new trajectory around obstacles?
Metrics

- The similarity of the new trajectory to the demonstrated trajectories is measured by the normalized distance computed by DTW.
 - First, we scale each demonstrated joint-space trajectory
 \[q_n^* = (s_{final}(q_n - \bar{q}) + \bar{q}) + d_{final} \]
 - Then, we compute the average normalized DTW distance as the similarity measure
 \[\text{similarity}(y) = \frac{1}{N} \sum_{n=1}^{N} DTW(q_n^*, y) \]
- The error of a new trajectory is defined by the distance between the via points and the corresponding points on the trajectory
 \[\text{error}(y) = \frac{1}{N_c} \sum_{i=1}^{N_c} |y(t_i) - f(e_i)| \]
Where \(f(\cdot) \) represents forward kinematics.
Error and Similarity

\[\alpha \]

\[\text{error (millimeter)} \]

\[\text{Dissimilarity} \]

OMPL
LSPB
ours
Evaluation: Success at Clearing Obstacles with via Points
Evaluation with NAO

- We used the right upper arm of NAO as the kinematics chain
- We randomly generated sets of start and end points
- We compare with the Linear Segment Parabolic Blend (LSPB) algorithm, and the RRT algorithm from OMPL
Visual Comparisons

Generating Manipulation Trajectory Using Motion Harmonics

Yongqiang Huang, Yu Sun

University of South Florida
Summary

• Represent functional motions with motion harmonics
• Keep spatial-temporal motion patterns and meet constraints
• Use dissimilarity between motion and distance to the constraints to evaluate
• Work with sample-based motion planners
• This material is based upon work supported by the National Science Foundation under Grant No. 1421418.
References

2. Sun, Y., Yun Lin, and Yongqiang Huang (2016) Robotic Grasping for Instrument Manipulations, URAI, 1-3

